Sulfonium boranes for the selective capture of cyanide ions in water.

Going fishing! The sulfonium borane [1](+) complexes cyanide in pure water at the maximum allowable concentration of 50 ppb recommended by the European Union. The high cyanide ion affinity displayed by this compound arises from favorable Coulombic effects augmented by a direct bonding interaction between the cyano and sulfonio groups.

[1]  J. Kobayashi,et al.  Detection of biologically important anions in aqueous media by dicationic azaborines bearing ammonio or phosphonio groups. , 2009, Chemistry.

[2]  F. Gabbaï,et al.  Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level. , 2009, Journal of the American Chemical Society.

[3]  Felix Zelder,et al.  Side chains of cobalt corrinoids control the sensitivity and selectivity in the colorimetric detection of cyanide. , 2009, Inorganic chemistry.

[4]  F. Gabbaï,et al.  Lewis acidity enhancement of triarylboranes via peripheral decoration with cationic groups. , 2009, Journal of the American Chemical Society.

[5]  L. Zhang,et al.  Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. , 2009, The Analyst.

[6]  J. Qin,et al.  An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water. , 2008, Chemical communications.

[7]  Fuyou Li,et al.  Highly selective phosphorescent chemosensor for fluoride based on an iridium(III) complex containing arylborane units. , 2008, Inorganic chemistry.

[8]  J. Sessler,et al.  The benzil-cyanide reaction and its application to the development of a selective cyanide anion indicator. , 2008, Journal of the American Chemical Society.

[9]  Xueliang Jiang,et al.  A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. , 2008, Organic & biomolecular chemistry.

[10]  D. Bourissou,et al.  Fluoride ion chelation by a bidentate phosphonium/borane Lewis acid. , 2008, Journal of the American Chemical Society.

[11]  D. Dryden,et al.  Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. , 2008, Chemical communications.

[12]  S. Aldridge,et al.  Colorimetric fluoride ion sensing by polyborylated ferrocenes: structural influences on thermodynamics and kinetics. , 2008, Inorganic chemistry.

[13]  F. Gabbaï,et al.  Cyanide ion complexation by a cationic borane. , 2008, Dalton transactions.

[14]  G. Bazan,et al.  Design organischer optoelektronischer Materialien durch laterale Borylsubstitution , 2008 .

[15]  G. Bazan,et al.  A new design strategy for organic optoelectronic materials by lateral boryl substitution. , 2008, Angewandte Chemie.

[16]  F. Gabbaï,et al.  Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. , 2007, Journal of the American Chemical Society.

[17]  Jason D. Masuda,et al.  Tuning Lewis acidity using the reactivity of "frustrated Lewis pairs": facile formation of phosphine-boranes and cationic phosphonium-boranes. , 2007, Dalton transactions.

[18]  Kimyoungmin,et al.  Phase Transfer of Fluoride Ion by Phosphonioborins , 2007 .

[19]  M. H. Lee,et al.  Synthesis and properties of a cationic bidentate Lewis acid. , 2007, Inorganic chemistry.

[20]  K. Venkatasubbaiah,et al.  Lewis acidity enhancement of organoboranes via oxidation of appended ferrocene moieties. , 2007, Chemical communications.

[21]  M. H. Lee,et al.  Fluoride ion complexation by a cationic borane in aqueous solution. , 2007, Chemical communications.

[22]  D. Meek,et al.  Bi‐, tri‐, and Tetradentate Phosphorus‐Sulfur Ligands , 2007 .

[23]  J. Durrant,et al.  Optical sensing of cyanide using hybrid biomolecular films , 2006 .

[24]  F. Gabbaï,et al.  Fluoride ion capture from water with a cationic borane. , 2006, Journal of the American Chemical Society.

[25]  J. Kobayashi,et al.  Tuning of the optical properties and Lewis acidity of dibenzopnictogenaborins by modification on bridging main group elements. , 2006, Inorganic chemistry.

[26]  K. Venkatasubbaiah,et al.  Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies. , 2006, Journal of the American Chemical Society.

[27]  Joseph A. Wright,et al.  The synthesis of new weakly coordinating diborate anions: anion stability as a function of linker structure and steric bulk. , 2006, Dalton transactions.

[28]  A. Wakamiya,et al.  Boron as a key component for new π-electron materials , 2006 .

[29]  J. Lakowicz,et al.  Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. , 2005, Journal of the American Chemical Society.

[30]  T. B. Marder,et al.  Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics , 2004 .

[31]  François P. Gabbaï Die Ladungsumpolungs‐Analogie als Inspiration für die Synthese mehrzähniger Lewis‐saurer Borane , 2003 .

[32]  F. Gabbaï The charge-reverse analogy as an inspiration for the preparation of polydentate Lewis acidic boranes. , 2003, Angewandte Chemie.

[33]  Todd B. Marder,et al.  Die Borchemie leuchtet: optische Eigenschaften von Molekülen und Polymeren C.D.E. dankt EPSRC und Syngenta für Postgraduiertenstipendien und T.B.M. der University of Durham für Unterstützung sowie Prof. Dr. K. Tamao für einen Vorabdruck von Lit. 32. , 2002 .

[34]  Christopher D. Entwistle,et al.  Boron chemistry lights the way: optical properties of molecular and polymeric systems. , 2002, Angewandte Chemie.

[35]  J. Perry,et al.  Efficient photoacids based upon triarylamine dialkylsulfonium salts. , 2002, Journal of the American Chemical Society.

[36]  J. Hoefelmeyer,et al.  Synthesis of 1,8-Diborylnaphthalenes by the Ring-Opening Reaction of a New Anionic Boron-Bridged Naphthalene Derivative , 2002 .

[37]  Igor Vorobyov,et al.  Hydrogen Bonding in Monomers and Dimers of 2-Aminoethanol , 2002 .

[38]  K. Tamao,et al.  Colorimetric fluoride ion sensing by boron-containing pi-electron systems. , 2001, Journal of the American Chemical Society.

[39]  W. Piers,et al.  Highly Lewis Acidic Bifunctional Organoboranes , 2000 .

[40]  J. Rábai,et al.  TRANSANNULAR SULFUR-NITROGEN INTERACTION IN 1,5-THIAZOCINE DERIVATIVES : AN X-RAY STUDY , 1996 .

[41]  S. Shinkai,et al.  Selective fluoride recognition with ferroceneboronic acid , 1995 .

[42]  R. Mews,et al.  Untersuchungen zur Lewis-Acidität fluorierter Sulfonium-Ionen† , 1992 .

[43]  K. Akiba,et al.  Transannular bond formation between the amino and the sulfonio groups in 6,7-dihydro-6-methyl-5H-dibenzo[b,g][1,5]thiazocinium salts. The first example of a sulfurane with an apical alkyl group , 1986 .

[44]  K. Akiba,et al.  A new type of σ-sulfurane with a transannular S⋯N bond: structures of S-substituted N-methyl-6,7-dihydro-5H,12H+-dibenzo[b,g][1,5]thiazocinium salts and N-methyl-6,7-dihydro-5H-dibenzo[b,g][1,5]thiazocine S-oxide , 1985 .

[45]  Y. Struchkov,et al.  Structure of the triphenylcyanoboronate of a bis-dimethylaminomethyl[1,1-dimercurio]ferrocenophane dication , 1984 .

[46]  K. Akiba,et al.  First example of an isolable .sigma.-sulfurane with an apical alkyl group effected by transannular bond formation between the amino and the sulfonio groups , 1983 .

[47]  J. Jaud,et al.  Crystal and molecular structure of an eight-membered cyclic imidosulphite, 2-(2,4,6-trichlorophenylimino)perhydro-1,3,2,6-dioxathiazocine , 1981 .