A Movie of RNA Polymerase II Transcription

[1]  Evgeny Nudler,et al.  RNA Polymerase Backtracking in Gene Regulation and Genome Instability , 2012, Cell.

[2]  Jens Michaelis,et al.  Dynamic architecture of a minimal RNA polymerase II open promoter complex. , 2012, Molecular cell.

[3]  F. Werner A Nexus for Gene Expression—Molecular Mechanisms of Spt5 and NusG in the Three Domains of Life , 2012, Journal of molecular biology.

[4]  Patrick Cramer,et al.  Review Conservation between the Rna Polymerase I, Ii, and Iii Transcription Initiation Machineries , 2022 .

[5]  S. Darst,et al.  Structural Basis for Promoter −10 Element Recognition by the Bacterial RNA Polymerase σ Subunit , 2011, Cell.

[6]  S. Sainsbury,et al.  Structural basis of initial RNA polymerase II transcription , 2011, The EMBO journal.

[7]  S. Hahn,et al.  Yeast Rrn7 and Human TAF1B Are TFIIB-Related RNA Polymerase I General Transcription Factors , 2011, Science.

[8]  X. Huang,et al.  Initiation Complex Structure and Promoter Proofreading , 2011, Science.

[9]  P. Cramer,et al.  Structural basis of RNA polymerase II backtracking, arrest and reactivation , 2011, Nature.

[10]  Patrick Cramer,et al.  Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity , 2011, The EMBO journal.

[11]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[12]  K. Murakami,et al.  RNA polymerase and transcription elongation factor Spt4/5 complex structure , 2010, Proceedings of the National Academy of Sciences.

[13]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[14]  Michael Feig,et al.  RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. , 2010, Biophysical journal.

[15]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[16]  S. Hahn,et al.  Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex , 2010, The EMBO journal.

[17]  W. Lane,et al.  Molecular evolution of multisubunit RNA polymerases: structural analysis. , 2010, Journal of molecular biology.

[18]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[19]  D. Bushnell,et al.  Structure of an RNA Polymerase II–TFIIB Complex and the Transcription Initiation Mechanism , 2010, Science.

[20]  P. Cramer,et al.  RNA polymerase II–TFIIB structure and mechanism of transcription initiation , 2009, Nature.

[21]  Patrick Cramer,et al.  RNA polymerase fidelity and transcriptional proofreading. , 2009, Current opinion in structural biology.

[22]  P. Cramer,et al.  Molecular Basis of Transcriptional Mutagenesis at 8-Oxoguanine* , 2009, The Journal of Biological Chemistry.

[23]  Jens Michaelis,et al.  Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex , 2009, Nucleic acids research.

[24]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[25]  Julio O. Ortiz,et al.  A movie of the RNA polymerase nucleotide addition cycle. , 2009, Current opinion in structural biology.

[26]  M. Levitt,et al.  Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Angstrom Resolution , 2009, Science.

[27]  D. Stuart,et al.  Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure , 2009, PLoS biology.

[28]  S. Tornaletti DNA Repair in Mammalian Cells , 2009, Cellular and Molecular Life Sciences.

[29]  Jena Yamada,et al.  Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. , 2008, Structure.

[30]  Johannes Söding,et al.  Genome-associated RNA Polymerase II Includes the Dissociable Rpb4/7 Subcomplex* , 2008, Journal of Biological Chemistry.

[31]  K. Murakami Faculty Opinions recommendation of Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. , 2008 .

[32]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[33]  P. Cramer,et al.  Structure of eukaryotic RNA polymerases. , 2008, Annual review of biophysics.

[34]  K. Struhl,et al.  The transition from transcriptional initiation to elongation. , 2008, Current opinion in genetics & development.

[35]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[36]  Jens Michaelis,et al.  Single-molecule tracking of mRNA exiting from RNA polymerase II , 2008, Proceedings of the National Academy of Sciences.

[37]  P. Cramer,et al.  Mechanism of transcriptional stalling at cisplatin-damaged DNA , 2007, Nature Structural &Molecular Biology.

[38]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[39]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[40]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[41]  Irina Artsimovitch,et al.  Structural basis for substrate loading in bacterial RNA polymerase , 2007, Nature.

[42]  R. Landick The regulatory roles and mechanism of transcriptional pausing. , 2006, Biochemical Society transactions.

[43]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[44]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[45]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[46]  John T. Lis,et al.  Breaking barriers to transcription elongation , 2006, Nature Reviews Molecular Cell Biology.

[47]  Yulia Yuzenkova,et al.  Transcript-Assisted Transcriptional Proofreading , 2006, Science.

[48]  J. Goodrich,et al.  An 8 nt RNA triggers a rate‐limiting shift of RNA polymerase II complexes into elongation , 2006, The EMBO journal.

[49]  C. Chiang,et al.  The General Transcription Machinery and General Cofactors , 2006, Critical reviews in biochemistry and molecular biology.

[50]  Mahadeb Pal,et al.  The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. , 2005, Molecular cell.

[51]  Vasily M Studitsky,et al.  Nature of the nucleosomal barrier to RNA polymerase II. , 2005, Molecular cell.

[52]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[53]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[54]  Danny Reinberg,et al.  Elongation by RNA polymerase II: the short and long of it. , 2004, Genes & development.

[55]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[56]  Steven Hahn,et al.  Structure and mechanism of the RNA polymerase II transcription machinery , 2004, Nature Structural &Molecular Biology.

[57]  J. Svejstrup The RNA polymerase II transcription cycle: cycling through chromatin. , 2004, Biochimica et biophysica acta.

[58]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[59]  P. Cramer,et al.  Architecture of initiation-competent 12-subunit RNA polymerase II , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Roger D Kornberg,et al.  Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: Implications for the initiation of transcription , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[62]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[63]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[64]  R. Conaway,et al.  Mechanism of transcription initiation and promoter escape by RNA polymerase II. , 2001, Current opinion in genetics & development.

[65]  T. Richmond,et al.  Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 A resolution. , 2000, Journal of molecular biology.

[66]  D. Reinberg,et al.  Mechanism of ATP-dependent promoter melting by transcription factor IIH. , 2000, Science.

[67]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[68]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[69]  P. Sigler,et al.  Structural basis of preinitiation complex assembly on human Pol II promoters , 2000, The EMBO journal.

[70]  P B Sigler,et al.  The structural basis for the oriented assembly of a TBP/TFB/promoter complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[72]  F. Holstege,et al.  Three transitions in the RNA polymerase II transcription complex during initiation , 1997, The EMBO journal.

[73]  P B Sigler,et al.  The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Bell,et al.  Factor requirements for transcription in the Archaeon Sulfolobus shibatae , 1997, The EMBO journal.

[75]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[76]  T Lagrange,et al.  The general transcription factors of RNA polymerase II. , 1996, Genes & development.

[77]  R. Conaway,et al.  The RNA polymerase II general elongation factors. , 1996, Trends in biochemical sciences.

[78]  R. Roeder,et al.  The role of general initiation factors in transcription by RNA polymerase II. , 1996, Trends in biochemical sciences.

[79]  S. Burley,et al.  Crystal structure of a TFIIB–TBP–TATA-element ternary complex , 1995, Nature.

[80]  D. Reinberg,et al.  Recycling of the general transcription factors during RNA polymerase II transcription. , 1995, Genes & development.

[81]  M. Gottesman,et al.  Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro , 1995, Journal of bacteriology.

[82]  M. Rudd,et al.  The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Lis,et al.  DNA melting on yeast RNA polymerase II promoters. , 1993, Science.

[84]  R. Young,et al.  Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. , 1991, The Journal of biological chemistry.

[85]  M. Chamberlin,et al.  Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. , 1989, The Journal of biological chemistry.

[86]  P. Sharp,et al.  Five intermediate complexes in transcription initiation by RNA polymerase II , 1989, Cell.

[87]  R. Roeder,et al.  Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. , 1988, Science.

[88]  D. Luse,et al.  Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter. , 1987, The Journal of biological chemistry.