Detecting multipartite entanglement structure with minimal resources

Recently, there are tremendous developments on the number of controllable qubits in several quantum computing systems. For these implementations, it is crucial to determine the entanglement structure of the prepared multipartite quantum state as a basis for further information processing tasks. In reality, evaluation of a multipartite state is in general a very challenging task owing to the exponential increase of the Hilbert space with respect to the number of system components. In this work, we propose a systematic method using very few local measurements to detect multipartite entanglement structures based on the graph state—one of the most important classes of quantum states for quantum information processing. Thanks to the close connection between the Schmidt coefficient and quantum entropy in graph states, we develop a family of efficient witness operators to detect the entanglement between subsystems under any partitions and hence the entanglement intactness. We show that the number of local measurements equals to the chromatic number of the underlying graph, which is a constant number, independent of the number of qubits. In reality, the optimization problem involved in the witnesses can be challenging with large system size. For several widely used graph states, such as 1-D and 2-D cluster states and the Greenberger–Horne–Zeilinger state, by taking advantage of the area law of entanglement entropy, we derive analytical solutions for the witnesses, which only employ two local measurements. Our method offers a standard tool for entanglement-structure detection to benchmark multipartite quantum systems.

[1]  Harald Weinfurter,et al.  Multipartite Entanglement Detection with Minimal Effort. , 2014, Physical review letters.

[2]  Xiongfeng Ma,et al.  Decomposition of a symmetric multipartite observable , 2019, Physical Review A.

[3]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[4]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[5]  Xiongfeng Ma,et al.  Efficient measurement-device-independent detection of multipartite entanglement structure , 2016 .

[6]  Géza Tóth,et al.  Entanglement between two spatially separated atomic modes , 2017, Science.

[7]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[8]  Bei Zeng,et al.  16-qubit IBM universal quantum computer can be fully entangled , 2018, npj Quantum Information.

[9]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[10]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[11]  Miao Huang,et al.  Observation of ten-photon entanglement using thin BiB 3 O 6 crystals , 2016, CLEO 2017.

[12]  J. Sperling,et al.  Structural quantification of entanglement. , 2014, Physical review letters.

[13]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[14]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[15]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[16]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[17]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[18]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[19]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[20]  Jian-Wei Pan,et al.  Toolbox for entanglement detection and fidelity estimation , 2007, 0706.2432.

[21]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[22]  B. Zeng,et al.  Quantum Information Meets Quantum Matter , 2015, Quantum Science and Technology.

[23]  Hans J. Briegel,et al.  Multipartite entanglement in spin chains , 2005, quant-ph/0502160.

[24]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[25]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[27]  Nicolas Gisin,et al.  Family of Bell-like Inequalities as Device-Independent Witnesses for Entanglement Depth. , 2014, Physical review letters.

[28]  Aleksandra Dimić,et al.  Single-copy entanglement detection , 2017, 1705.06719.

[29]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[30]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[31]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[32]  P. Walther,et al.  Experimental few-copy multi-particle entanglement detection , 2018, Nature Physics.

[33]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[34]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[35]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[36]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[37]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[38]  G. Tóth,et al.  Bell inequalities for graph states. , 2004, Physical review letters.

[39]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[40]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[41]  B. Terhal A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.

[42]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[43]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[44]  Li Li,et al.  Entanglement Structure: Entanglement Partitioning in Multipartite Systems and Its Experimental Detection Using Optimizable Witnesses , 2017, Physical Review X.

[45]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[46]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[47]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[48]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[49]  O. Gühne,et al.  Characterizing the width of entanglement , 2016 .

[50]  Géza Tóth,et al.  Detecting multiparticle entanglement of Dicke states. , 2014, Physical review letters.

[51]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[52]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[53]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[54]  Meng Khoon Tey,et al.  QUANTUM ENTANGLEMENT: Deterministic entanglement generation from driving through quantum phase transitions , 2017 .

[55]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[56]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[57]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[58]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.