A survey on tag recommendation methods

Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.

[1]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[2]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[3]  Brian D. Davison,et al.  RSDC'99: tag recommendation using keywords and association rules , 2009 .

[4]  Nenghai Yu,et al.  WWW 2009 MADRID! Track: Rich Media / Session: Tagging and Clustering Learning to , 2022 .

[5]  John Riedl,et al.  Introduction to special issue on recommender systems , 2011, ACM Trans. Web.

[6]  Jianmin Wang,et al.  Automatic image annotation using tag-related random search over visual neighbors , 2012, CIKM.

[7]  Ee-Peng Lim,et al.  A Probabilistic Approach to Personalized Tag Recommendation , 2010, 2010 IEEE Second International Conference on Social Computing.

[8]  Flavio Figueiredo,et al.  Assessing the quality of textual features in social media , 2013, Inf. Process. Manag..

[9]  Ralf Krestel,et al.  Personalized topic-based tag recommendation , 2012, Neurocomputing.

[10]  Òscar Celma,et al.  A new approach to evaluating novel recommendations , 2008, RecSys '08.

[11]  Saul Vargas,et al.  Rank and relevance in novelty and diversity metrics for recommender systems , 2011, RecSys '11.

[12]  Yang Song,et al.  Automatic tag recommendation algorithms for social recommender systems , 2011, ACM Trans. Web.

[13]  Maoqiang Xie,et al.  Social Tag Prediction Base on Supervised Ranking Model , 2009, DC@PKDD/ECML.

[14]  Rodrygo L. T. Santos,et al.  Beyond Relevance , 2016, ACM Trans. Intell. Syst. Technol..

[15]  Jussara M. Almeida,et al.  Personalized and object-centered tag recommendation methods for Web 2.0 applications , 2014, Inf. Process. Manag..

[16]  Weizhe Zhang,et al.  Speak the same language with your friends: augmenting tag recommenders with social relations , 2010, HT '10.

[17]  Jane Yung-jen Hsu,et al.  A Content-Based Method to Enhance Tag Recommendation , 2009, IJCAI.

[18]  Mohammed J. Zaki,et al.  Multi-evidence, multi-criteria, lazy associative document classification , 2006, CIKM '06.

[19]  Georgia Koutrika,et al.  On the selection of tags for tag clouds , 2011, WSDM '11.

[20]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[21]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[22]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[23]  Jussara M. Almeida,et al.  Automatic query expansion based on tag recommendation , 2012, CIKM.

[24]  Tao Qin,et al.  A general approximation framework for direct optimization of information retrieval measures , 2010, Information Retrieval.

[25]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[26]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[27]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[28]  Marcos André Gonçalves,et al.  A brief survey of automatic methods for author name disambiguation , 2012, SGMD.

[29]  Jussara M. Almeida,et al.  Associative tag recommendation exploiting multiple textual features , 2011, SIGIR.

[30]  Jussara M. Almeida,et al.  A Comparative Study of Learning-to-Rank Techniques for Tag Recommendation , 2013, J. Inf. Data Manag..

[31]  Brian D. Davison,et al.  Introduction to special section on adversarial issues in Web search , 2008, TWEB.

[32]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[33]  Louise Spiteri,et al.  Structure and form of folksonomy tags: The road to the public library catalogue , 2007, Webology.

[34]  Rui Li,et al.  Survey on social tagging techniques , 2010, SKDD.

[35]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[36]  Carlos Miguel Herrera La pensée constitutionnelle du social , 2008 .

[37]  Yunseon Choi,et al.  A complete assessment of tagging quality: A consolidated methodology , 2015, J. Assoc. Inf. Sci. Technol..

[38]  Brian D. Davison,et al.  RSDC'09: Tag Recommendation Using Keywords and Association Rules , 2009, DC@PKDD/ECML.

[39]  Georgia Koutrika,et al.  Combating spam in tagging systems: An evaluation , 2008, TWEB.

[40]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[41]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[42]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[43]  Pasquale Lops,et al.  Content-based and collaborative techniques for tag recommendation: an empirical evaluation , 2012, Journal of Intelligent Information Systems.

[44]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[45]  Winfried Lamersdorf,et al.  A Multi-criteria Taxonomy of Business Models in Electronic Commerce , 2001, WELCOM.

[46]  Chun Chen,et al.  Personalized tag recommendation using graph-based ranking on multi-type interrelated objects , 2009, SIGIR.

[47]  Jussara M. Almeida,et al.  Exploiting relevance, novelty and diversity in tag recommendation , 2012, WebMedia.

[48]  Adam Mathes,et al.  Folksonomies-Cooperative Classification and Communication Through Shared Metadata , 2004 .

[49]  Ning Zhang,et al.  A Tag Recommendation System Based on Contents , 2009, DC@PKDD/ECML.

[50]  Jussara M. Almeida,et al.  On cold start for associative tag recommendation , 2016, J. Assoc. Inf. Sci. Technol..

[51]  Adam Rae,et al.  Improving tag recommendation using social networks , 2010, RIAO.

[52]  Andreas Hotho,et al.  Testing and evaluating tag recommenders in a live system , 2009, RecSys '09.

[53]  Mark Sanderson,et al.  Automatic video tagging using content redundancy , 2009, SIGIR.

[54]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[55]  Junghoo Cho,et al.  Automatically generating descriptions for resources by tag modeling , 2013, CIKM.

[56]  Bamshad Mobasher,et al.  Hybrid tag recommendation for social annotation systems , 2010, CIKM.

[57]  Hyoseop Shin,et al.  Tag recommendation by machine learning with textual and social features , 2012, Journal of Intelligent Information Systems.

[58]  Wolfgang Nejdl,et al.  An adaptive teleportation random walk model for learning social tag relevance , 2014, SIGIR.

[59]  Anísio Lacerda,et al.  Demand-Driven Tag Recommendation , 2010, ECML/PKDD.

[60]  Mark Sanderson,et al.  Content redundancy in YouTube and its application to video tagging , 2011, TOIS.

[61]  Rodrygo L. T. Santos,et al.  Topic diversity in tag recommendation , 2013, RecSys.

[62]  Hsin-Hsi Chen,et al.  Efficient and effective prediction of social tags to enhance web search , 2011, J. Assoc. Inf. Sci. Technol..

[63]  Karl Aberer,et al.  Tag Recommendation for Large-Scale Ontology-Based Information Systems , 2012, SEMWEB.

[64]  Ingmar Weber,et al.  Personalized, interactive tag recommendation for flickr , 2008, RecSys '08.

[65]  Evangelos E. Milios,et al.  Efficient Tag Recommendation for Real-Life Data , 2011, TIST.

[66]  Brian D. Davison,et al.  Connecting comments and tags: improved modeling of social tagging systems , 2013, WSDM.

[67]  Flavio Figueiredo,et al.  On the Quality of Information for Web 2.0 Services , 2010, IEEE Internet Computing.

[68]  Evangelos E. Milios,et al.  Tag Sources for Recommendation in Collaborative Tagging Systems , 2009, DC@PKDD/ECML.

[69]  Rodrygo L. T. Santos,et al.  On Tag Recommendation for Expertise Profiling: A Case Study in the Scientific Domain , 2015, WSDM.

[70]  Jianyong Wang,et al.  Incorporating heterogeneous information for personalized tag recommendation in social tagging systems , 2012, KDD.

[71]  Craig MacDonald,et al.  On the role of novelty for search result diversification , 2011, Information Retrieval.

[72]  Jussara M. Almeida,et al.  Measuring and addressing the impact of cold start on associative tag recommenders , 2013, WebMedia.

[73]  Daniele Quercia,et al.  Auralist: introducing serendipity into music recommendation , 2012, WSDM '12.

[74]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[75]  David Carmel,et al.  Social media recommendation based on people and tags , 2010, SIGIR.

[76]  Jussara M. Almeida,et al.  Exploiting Novelty and Diversity in Tag Recommendation , 2013, ECIR.

[77]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .