Multi‐level hp‐finite cell method for embedded interface problems with application in biomechanics

This work presents a numerical discretization technique for solving 3-dimensional material interface problems involving complex geometry without conforming mesh generation. The finite cell method (FCM), which is a high-order fictitious domain approach, is used for the numerical approximation of the solution without a boundary-conforming mesh. Weak discontinuities at material interfaces are resolved by using separate FCM meshes for each material sub-domain and weakly enforcing the interface conditions between the different meshes. Additionally, a recently developed hierarchical hp-refinement scheme is used to locally refine the FCM meshes to resolve singularities and local solution features at the interfaces. Thereby, higher convergence rates are achievable for nonsmooth problems. A series of numerical experiments with 2- and 3-dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in conjunction with the weak enforcement of the interface conditions leads to a significant improvement of the convergence rates, even in the presence of singularities. Finally, the proposed technique is applied to simulate a vertebra-implant model. The application showcases the method's potential as an accurate simulation tool for biomechanical problems involving complex geometry, and it demonstrates its flexibility in dealing with different types of geometric description.

[1]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[2]  Nancy R. Sottos,et al.  A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials , 2016, J. Comput. Phys..

[3]  Ivo Babuška,et al.  Approximation properties of the h-p version of the finite element method , 1996 .

[4]  Alexander Düster,et al.  Numerical analysis of Lamb waves using the finite and spectral cell methods , 2014 .

[5]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[6]  Alessandro Reali,et al.  Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .

[7]  Ernst Rank,et al.  Finite cell method , 2007 .

[8]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[9]  Soheil Soghrati,et al.  3D hierarchical interface-enriched finite element method: Implementation and applications , 2015, J. Comput. Phys..

[10]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[11]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[12]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[13]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[14]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[15]  I. Babuska The Finite Element Method with Penalty , 1973 .

[16]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[17]  Ernst Rank,et al.  PERFORMANCE OF DIFFERENT INTEGRATION SCHEMES IN FACING DISCONTINUITIES IN THE FINITE CELL METHOD , 2013 .

[18]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[19]  Carsten Maple,et al.  Geometric design and space planning using the marching squares and marching cube algorithms , 2003, 2003 International Conference on Geometric Modeling and Graphics, 2003. Proceedings.

[20]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[21]  Zohar Yosibash,et al.  Numerical analysis on singular solutions of the Poisson equation in two-dimensions , 1997 .

[22]  Peter Varga,et al.  HR-pQCT-based homogenised finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as μFE models , 2012, Computer methods in biomechanics and biomedical engineering.

[23]  Marek Behr,et al.  Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method , 2016 .

[24]  Alessandro Reali,et al.  Multi-level hp-adaptivity and explicit error estimation , 2016, Adv. Model. Simul. Eng. Sci..

[25]  Philippe H. Geubelle,et al.  An interface‐enriched generalized FEM for problems with discontinuous gradient fields , 2012 .

[26]  Philippe H. Geubelle,et al.  A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries , 2012 .

[27]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[28]  Grégory Legrain,et al.  On the use of the extended finite element method with quadtree/octree meshes , 2011 .

[29]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[30]  E. Rank,et al.  Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method , 2018 .

[31]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[32]  P. Arbenz,et al.  Implant stability is affected by local bone microstructural quality. , 2011, Bone.

[33]  Ulrich Gabbert,et al.  The finite cell method for polygonal meshes: poly-FCM , 2016, Computational Mechanics.

[34]  M. Krafczyk,et al.  Fast kd‐tree‐based hierarchical radiosity for radiative heat transport problems , 2011 .

[35]  Ernst Rank,et al.  Theoretical and Numerical Investigation of the Finite Cell Method , 2015, Journal of Scientific Computing.

[36]  I. Babuska,et al.  The generalized finite element method , 2001 .

[37]  Jakub Červený,et al.  Automatic hp-Adaptivity With Arbitrary-Level Hanging Nodes , 2006 .

[38]  Ulrich Gabbert,et al.  The finite cell method for tetrahedral meshes , 2016 .

[39]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[40]  N. Zander,et al.  Multi-level hp -FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes (Multi-Level hp -FEM: dynamische Netzverfeinerung für Finite Elemente hoher Ordnung mit beliebigen hängenden Knoten) , 2017 .

[41]  Vadim Shapiro,et al.  Adaptively weighted numerical integration over arbitrary domains , 2014, Comput. Math. Appl..

[42]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[43]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[44]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[45]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[46]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[47]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[48]  Ernst Rank,et al.  Finite Cell Method: High-Order Structural Dynamics for Complex Geometries , 2015 .

[49]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[50]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[51]  C. D. Mote Global‐local finite element , 1971 .

[52]  Stein K. F. Stoter,et al.  The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements , 2016 .

[53]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[54]  R. Müller,et al.  The discrete nature of trabecular bone microarchitecture affects implant stability. , 2012, Journal of biomechanics.

[55]  Alexander Düster,et al.  Local enrichment of the finite cell method for problems with material interfaces , 2013 .

[56]  Ernst Rank,et al.  Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes , 2015 .

[57]  Stefan Kollmannsberger,et al.  Weak imposition of contact constraints on automatically recovered high order embedded interfaces , 2016 .

[58]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[59]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method: Higher‐order immersogeometric analysis on adaptive non‐boundary‐fitted meshes , 2016 .

[60]  Nancy R. Sottos,et al.  A NURBS‐based interface‐enriched generalized finite element method for problems with complex discontinuous gradient fields , 2015 .

[61]  Long Chen INTRODUCTION TO FINITE ELEMENT METHODS , 2003 .

[62]  Samir Omerovic,et al.  Higher-order meshing of implicit geometries - part I: Integration and interpolation in cut elements , 2017, ArXiv.

[63]  Ernst Rank,et al.  Efficient and accurate numerical quadrature for immersed boundary methods , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[64]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[65]  Ernst Rank,et al.  Smart octrees: Accurately integrating discontinuous functions in 3D , 2016 .

[66]  Ernst Rank,et al.  The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes , 2016 .

[67]  Barna A. Szabó,et al.  Quasi-regional mapping for the p-version of the finite element method , 1997 .

[68]  K. Bathe Finite Element Procedures , 1995 .

[69]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[70]  Alexander Düster,et al.  Finite and spectral cell method for wave propagation in heterogeneous materials , 2014, Computational Mechanics.

[71]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[72]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[73]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[74]  Samir Omerovic,et al.  Conformal higher‐order remeshing schemes for implicitly defined interface problems , 2016, ArXiv.

[75]  Ernst Rank,et al.  FCMLab: A finite cell research toolbox for MATLAB , 2014, Adv. Eng. Softw..

[76]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[77]  Alexander Düster,et al.  Numerical integration of discontinuities on arbitrary domains based on moment fitting , 2016 .

[78]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[79]  Ernst Rank,et al.  Multi‐level hp‐adaptivity for cohesive fracture modeling , 2017 .

[80]  Ralph Müller,et al.  The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. , 2012, Bone.

[81]  F. de Prenter,et al.  Condition number analysis and preconditioning of the finite cell method , 2016, 1601.05129.