Biomimetic Active Touch with Fingertips and Whiskers

This study provides a synthetic viewpoint that compares, contrasts, and draws commonalities for biomimetic perception over a range of tactile sensors and tactile stimuli. Biomimetic active perception is formulated from three principles: (i) evidence accumulation based on leading models of perceptual decision making; (ii) action selection with an evidence-based policy, here based on overt focal attention; and (iii) sensory encoding of evidence based on neural coding. Two experiments with each of three biomimetic tactile sensors are considered: the iCub (capacitive) fingertip, the TacTip (optical) tactile sensor, and BIOTACT whiskers. For each sensor, one experiment considers a similar task (perception of shape and location) and the other a different tactile perception task. In all experiments, active perception with a biomimetic action selection policy based on focal attention outperforms passive perception with static or random action selection. The active perception also consistently reaches superresolved accuracy (hyperacuity) finer than the spacing between tactile elements. Biomimetic active touch thus offers a common approach for biomimetic tactile sensors to accurately and robustly characterize and explore non-trivial, uncertain environments analogous to how animals perceive the natural world.

[1]  Mark D. Humphries,et al.  BRAHMS: Novel middleware for integrated systems computation , 2010, Adv. Eng. Informatics.

[2]  Trevor Darrell,et al.  Robotic learning of haptic adjectives through physical interaction , 2015, Robotics Auton. Syst..

[3]  Mark R. Cutkosky,et al.  Force and Tactile Sensors , 2008, Springer Handbook of Robotics.

[4]  Masatoshi Ishikawa,et al.  An active touch sensing method using a spatial filtering tactile sensor , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[5]  Christian Cipriani,et al.  Roughness Encoding for Discrimination of Surfaces in Artificial Active-Touch , 2011, IEEE Transactions on Robotics.

[6]  Uriel Martinez-Hernandez Tactile Sensors , 2015, Scholarpedia.

[7]  P. Swain,et al.  Strategies for cellular decision-making , 2009, Molecular systems biology.

[8]  Anthony G. Pipe,et al.  Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System , 2007, Adapt. Behav..

[9]  J. Wolfowitz,et al.  Optimum Character of the Sequential Probability Ratio Test , 1948 .

[10]  Mathew H. Evans,et al.  Tactile Discrimination Using Active Whisker Sensors , 2012, IEEE Sensors Journal.

[11]  Nathan F. Lepora,et al.  Whisker-object contact speed affects radial distance estimation , 2010, 2010 IEEE International Conference on Robotics and Biomimetics.

[12]  Kazuo Tanie,et al.  Development of a finger-shaped tactile sensor and its evaluation by active touch , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[13]  Nathan F. Lepora,et al.  The effect of whisker movement on radial distance estimation: a case study in comparative robotics , 2013, Front. Neurorobot..

[14]  Hiroshi Yokoi,et al.  An active artificial whisker array for texture discrimination , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Anthony G. Pipe,et al.  From Rat Vibrissae to Biomimetic Technology for Active Touch , 2009 .

[16]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[17]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[18]  K. Wise,et al.  A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity , 1982, IEEE Transactions on Electron Devices.

[19]  Jonathan Rossiter,et al.  Development of a tactile sensor based on biologically inspired edge encoding , 2009, 2009 International Conference on Advanced Robotics.

[20]  Jeremy A. Fishel,et al.  Bayesian Action&Perception: Representing the World in the Brain , 2014, Front. Neurosci..

[21]  Lucia Beccai,et al.  Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger , 2011 .

[22]  Terry Wrigley Selection, selection, selection , 2006 .

[23]  Giulio Sandini,et al.  The iCub humanoid robot: an open platform for research in embodied cognition , 2008, PerMIS.

[24]  Nathan F. Lepora,et al.  Active Bayesian perception and reinforcement learning , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Nathan F. Lepora,et al.  Active Bayesian Perception for Simultaneous Object Localization and Identification , 2013, Robotics: Science and Systems.

[26]  T. Prescott,et al.  Introduction. Modelling natural action selection , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[28]  Tony J. Prescott Action selection , 2008, Scholarpedia.

[29]  Gerald Westheimer,et al.  VISUAL ACUITY AND HYPERACUITY , 2009 .

[30]  R. Bajcsy Active perception , 1988 .

[31]  Giorgio Metta,et al.  Embodied hyperacuity from Bayesian perception: Shape and position discrimination with an iCub fingertip sensor , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Anthony G. Pipe,et al.  Contact type dependency of texture classification in a whiskered mobile robot , 2009, Auton. Robots.

[33]  Nathan F. Lepora,et al.  Naive Bayes texture classification applied to whisker data from a moving robot , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[34]  Chris Melhuish,et al.  Seeing by Touch: Evaluation of a Soft Biologically-Inspired Artificial Fingertip in Real-Time Active Touch , 2014, Sensors.

[35]  Nathan F. Lepora,et al.  The Basal Ganglia Optimize Decision Making over General Perceptual Hypotheses , 2012, Neural Computation.

[36]  Kazuo Tanie,et al.  Contact point detection for grasping an unknown object using self-posture changeability , 1990, IEEE Trans. Robotics Autom..

[37]  Jonathan Rossiter,et al.  TACTIP - Tactile Fingertip Device, Texture Analysis through Optical Tracking of Skin Features , 2013, Living Machines.

[38]  Nathan F. Lepora,et al.  Superresolution with an optical tactile sensor , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Giorgio Metta,et al.  Tactile Superresolution and Biomimetic Hyperacuity , 2015, IEEE Transactions on Robotics.

[40]  Jorge Dias,et al.  Touch attention Bayesian models for robotic active haptic exploration of heterogeneous surfaces , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Nathan F. Lepora,et al.  Tactile Quality Control With Biomimetic Active Touch , 2016, IEEE Robotics and Automation Letters.

[42]  N. Lepora Active tactile perception , 2015, Scholarpedia.

[43]  Sharon A. Stansfield,et al.  Primitives, features, and exploratory procedures: Building a robot tactile perception system , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[44]  Anthony G. Pipe,et al.  Whiskered robots , 2015, Scholarpedia.

[45]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[46]  Gerald E. Loeb,et al.  Bayesian Exploration for Intelligent Identification of Textures , 2012, Front. Neurorobot..

[47]  Tomonori Yamamoto,et al.  Use of tactile feedback to control exploratory movements to characterize object compliance , 2012, Front. Neurorobot..

[48]  Nathan F. Lepora,et al.  Tactile manipulation with biomimetic active touch , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[49]  Giorgio Metta,et al.  Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors , 2011, IEEE Transactions on Robotics.

[50]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[51]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[52]  Nathan F. Lepora,et al.  Active touch for robust perception under position uncertainty , 2013, 2013 IEEE International Conference on Robotics and Automation.

[53]  J. Gibson Observations on active touch. , 1962, Psychological review.

[54]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[55]  Jürgen Schmidhuber,et al.  Learning tactile skills through curious exploration , 2012, Front. Neurorobot..

[56]  Ruzena Bajcsy,et al.  Object exploration in one and two fingered robots , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[57]  Toshio Tsuji,et al.  Active antenna for contact sensing , 1998, IEEE Trans. Robotics Autom..

[58]  Kevin Gurney,et al.  Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination , 2012, Journal of The Royal Society Interface.

[59]  Anthony G. Pipe,et al.  Whisking with robots , 2009, IEEE Robotics & Automation Magazine.

[60]  Allison M. Okamura,et al.  Feature Detection for Haptic Exploration with Robotic Fingers , 2001, Int. J. Robotics Res..

[61]  Nathan F. Lepora,et al.  Tactile Manipulation With a TacThumb Integrated on the Open-Hand M2 Gripper , 2016, IEEE Robotics and Automation Letters.

[62]  A. Wing,et al.  Active touch sensing , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  T. Prescott,et al.  Biomimetic vibrissal sensing for robots , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  Eric Maël,et al.  A sensor for dynamic tactile information with applications in human-robot interaction and object exploration , 2006, Robotics Auton. Syst..

[65]  Giorgio Metta,et al.  Active contour following to explore object shape with robot touch , 2013, 2013 World Haptics Conference (WHC).

[66]  Nathan F. Lepora,et al.  Brain-inspired Bayesian perception for biomimetic robot touch , 2012, 2012 IEEE International Conference on Robotics and Automation.

[67]  Nathan F. Lepora,et al.  The state of the art in biomimetics , 2012, Living Machines.

[68]  D. Sumpter The principles of collective animal behaviour , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[69]  R. Klatzky,et al.  Hand movements: A window into haptic object recognition , 1987, Cognitive Psychology.