Simplicial Homology of Random Configurations

Given a Poisson process on a d-dimensional torus, its random geometric simplicial complex is the complex whose vertices are the points of the Poisson process and simplices are given by the C̆ech complex associated to the coverage of each point. By means of Malliavin calculus, we compute explicitly the three first-order moments of the number of k-simplices, and provide a way to compute higher-order moments. Then we derive the mean and the variance of the Euler characteristic. Using the Stein method, we estimate the speed of convergence of the number of occurrences of any connected subcomplex as it converges towards the Gaussian law when the intensity of the Poisson point process tends to infinity. We use a concentration inequality for Poisson processes to find bounds for the tail distribution of the Betti number of first order and the Euler characteristic in such simplicial complexes.

[1]  伊藤 嘉房 Generalized Poisson functionals , 1988 .

[2]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[3]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[4]  Elizabeth S. Meckes,et al.  Limit theorems for Betti numbers of random simplicial complexes , 2010 .

[5]  R. Ho Algebraic Topology , 2022 .

[6]  Nicolas Privault,et al.  Stochastic Analysis in Discrete and Continuous Settings: With Normal Martingales , 2009 .

[7]  Abubakr Muhammad,et al.  Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[8]  Davide Brunelli,et al.  Wireless Sensor Networks , 2012, Lecture Notes in Computer Science.

[9]  Randy H. Katz,et al.  Next century challenges: mobile networking for “Smart Dust” , 1999, MobiCom.

[10]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[11]  M. Reitzner,et al.  Central limit theorems for $U$-statistics of Poisson point processes , 2011, 1104.1039.

[12]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[13]  J. Yukich,et al.  Limit theory for point processes in manifolds , 2011, 1104.0914.

[14]  J. Ghosh,et al.  A class of U- statistics and asymptotic normality of the number of k- clusters , 1992 .

[15]  Laurent Decreusefond,et al.  On the One Dimensional Poisson Random Geometric Graph , 2010 .

[16]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  G. Peccati,et al.  Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .

[18]  A. Blumberg BASIC TOPOLOGY , 2002 .

[19]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[20]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[21]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[22]  Upper bounds on Rubinstein distances on configuration spaces and applications , 2008, 0812.3221.

[23]  Ian F. Akyildiz,et al.  Wireless sensor networks , 2007 .

[24]  Murad S. Taqqu,et al.  Stein’s method and Normal approximation of Poisson functionals , 2008, 0807.5035.

[25]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[26]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .