A Novel Complex-Valued Encoding Grey Wolf Optimization Algorithm

Grey wolf optimization (GWO) is one of the recently proposed heuristic algorithms imitating the leadership hierarchy and hunting mechanism of grey wolves in nature. The aim of these algorithms is to perform global optimization. This paper presents a modified GWO algorithm based on complex-valued encoding; namely the complex-valued encoding grey wolf optimization (CGWO). We use CGWO to test 16 unconstrained benchmark functions with seven different scales and infinite impulse response (IIR) model identification. Compared to the real-valued GWO algorithm and other optimization algorithms; the CGWO performs significantly better in terms of accuracy; robustness; and convergence speed.

[1]  Wei Cai,et al.  Grey Wolf Optimizer for parameter estimation in surface waves , 2015 .

[2]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[3]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[4]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[5]  Erik Valdemar Cuevas Jiménez,et al.  A Comparison of Evolutionary Computation Techniques for IIR Model Identification , 2014, J. Appl. Math..

[6]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[7]  Xin‐She Yang,et al.  Appendix A: Test Problems in Optimization , 2010 .

[8]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[9]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[10]  David Casasent,et al.  A classifier neural net with complex-valued weights and square-law nonlinearities , 1995, Neural Networks.

[11]  Mohd Herwan Sulaiman,et al.  Using the gray wolf optimizer for solving optimal reactive power dispatch problem , 2015, Appl. Soft Comput..

[12]  S. J. Flockton,et al.  Adaptive Recursive Filtering Using Evolutionary Algorithms , 1997 .

[13]  R. Storn,et al.  Differential Evolution , 2004 .

[14]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[15]  Andrew Lewis,et al.  Adaptive gbest-guided gravitational search algorithm , 2014, Neural Computing and Applications.

[16]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[17]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[18]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[19]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[20]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[21]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[22]  G. M. Komaki,et al.  Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time , 2015, J. Comput. Sci..

[23]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[24]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[25]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[26]  Andrew Lewis,et al.  Let a biogeography-based optimizer train your Multi-Layer Perceptron , 2014, Inf. Sci..

[27]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[28]  Li Zheng,et al.  Particle swarm optimization based on complex-valued encoding and application in function optimization , 2009 .

[29]  Ösman Kükrer Analysis of the dynamics of a memoryless nonlinear gradient IIR adaptive notch filter , 2011, Signal Process..

[30]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[31]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[32]  Mohammad Reza Akbarzadeh Totonchi,et al.  Magnetic Optimization Algorithms, a New Synthesis , 2008 .

[33]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..