OPTIMAL POWER FLOW IN RECTANGULAR FORM VIA AN INTERIOR POINT METHOD

In this paper we describe an I terior Point Method (IPM) to solve large scaleNonLinear Programming (NLP) problems, tailored to the solution of a specialized Optimal Power Plow (OPF) formulation that uses bus voltages in rectangular coordinates. The distinctive feature of thi s OPF formulation is that the objective function and constrain s are quadratic functions, and such quadratic properties are explored in the development of a robust nonlinear OPF solution procedure for application in heavily loaded power systems.

[1]  Y. Tamura,et al.  A Load Flow Calculation Method for Ill-Conditioned Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[2]  K. D. Frey,et al.  Treatment of inequality constraints in power system state estimation , 1995 .

[3]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[4]  Francisco D. Galiana,et al.  A survey of the optimal power flow literature , 1991 .

[5]  Fernando L. Alvarado,et al.  Weighted Least Absolute Value state estimation using interior point methods , 1994 .

[6]  S. Granville,et al.  Application of interior point methods to power flow unsolvability , 1996 .

[7]  S. Granville Optimal reactive dispatch through interior point methods , 1994 .

[8]  William F. Tinney,et al.  Optimal Power Flow Solutions , 1968 .

[9]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[10]  W. Tinney,et al.  Optimal Power Flow By Newton Approach , 1984, IEEE Transactions on Power Apparatus and Systems.

[11]  Leon S. Lasdon,et al.  Primal-Dual and Primal Interior Point Algorithms for General Nonlinear Programs , 1995, INFORMS J. Comput..

[12]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[13]  A. Monticelli,et al.  Adaptive movement penalty method for the Newton optimal power , 1991, IEEE Power Engineering Review.

[14]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[15]  B. Stott,et al.  Further developments in LP-based optimal power flow , 1990 .

[16]  Kumaraswamy Ponnambalam,et al.  A fast algorithm for power system optimization problems using an interior point method , 1991 .

[17]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[18]  Sanjay Mehrotra,et al.  Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..

[19]  R. E. Marsten,et al.  A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows , 1993 .

[20]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[21]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[22]  Thomas J. Overbye,et al.  Effective calculation of power system low-voltage solutions , 1996 .

[23]  S. Iwamoto,et al.  Hierarchical State Estimation Using a Fast Rectangular-Coordinate Method , 1989, IEEE Power Engineering Review.