Calcium carbonate measurements in the surface global ocean based on Moderate‐Resolution Imaging Spectroradiometer data

[1] We describe a two-band algorithm for the remote quantification of the ocean's suspended calcium carbonate (also known as particulate inorganic carbon (PIC)), based on normalized water-leaving radiance at 440 and 550 nm. We tested this algorithm using ship-derived and satellite-derived results from a variety of marine environments. From this validation work we calculated the overall accuracy of the satellite-based PIC estimates, assuming different timescales and space scales for binning. After performing the validation work we applied the two-band algorithm to water-leaving radiance data from 2002, sampled by Moderate-Resolution Imaging Spectroradiometer (MODIS)/Terra (a 36-band satellite spectrometer designed to observe land, ocean, and atmosphere), and we derived seasonal, global maps of the standing stock of pelagic PIC as well as particulate organic carbon (POC). These data, along with limited observations on the turnover time of calcium carbonate coccoliths in the euphotic zone, provide some new insights into global rates of pelagic calcite production.

[1]  P. M. Holligan,et al.  Optical impacts of oceanic coccolithophore blooms , 1999 .

[2]  E. Boyle The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide , 1988 .

[3]  H. Aoyama,et al.  A Massive Coccolithophorid Bloom Observed in Mikawa Bay, Japan , 1999 .

[4]  P. Holligan,et al.  Satellite and ship studies of coccolithophore production along a continental shelf edge , 1983, Nature.

[5]  W. Balch,et al.  Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon , 2001 .

[6]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[7]  M. S. Finch,et al.  The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 , 1994 .

[8]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[9]  E. Paasche A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions , 2001 .

[10]  E. Maier‐Reimer Dynamic vs. apparent Redfield ratio in the oceans: A case for 3D-models , 1996 .

[11]  W. Balch,et al.  Optical backscattering by calcifying algae: Separating the contribution of particulate inorganic and organic carbon fractions , 1999 .

[12]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[13]  Emilio Marañón,et al.  The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea , 1998 .

[14]  P. Liss,et al.  Dimethylsulphide and dimethylsulphoniopropionate in the Northeast atlantic during the summer coccolithophore bloom , 1993 .

[15]  W. Balch,et al.  Response of water‐leaving radiance to particulate calcite and chlorophyll a concentrations: A model for Gulf of Maine coccolithophore blooms , 1994 .

[16]  G. Berge Discoloration of the sea due to Coccolithus huxley I “bloom” , 1962 .

[17]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[18]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[19]  Howard R. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery , 1983, Lecture Notes on Coastal and Estuarine Studies.

[20]  E. Sundquist,et al.  The Global Carbon Dioxide Budget , 1993, Science.

[21]  William M. Balch,et al.  Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates , 1989 .

[22]  David Archer,et al.  A data-driven model of the global calcite lysocline , 1996 .

[23]  S. Blackburn,et al.  A coccolithophorid bloom in Jervis Bay, Australia , 1993 .

[24]  W. Mccluney,et al.  Estimation of the depth of sunlight penetration in the sea for remote sensing. , 1975, Applied optics.

[25]  J. Cullen On models of growth and photosynthesis in phytoplankton , 1990 .

[26]  P. Boyd,et al.  Production Of Organic And Inorganic Carbon Within A Large-Scale Coccolithophore Bloom In The Northeast Atlantic-Ocean , 1993 .

[27]  M. D. Keller,et al.  Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine , 1994 .

[28]  E. Paasche,et al.  Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities , 1996 .

[29]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[30]  K. A. Kilpatrick,et al.  The 1991 coccolithophore bloom in the central North Atlantic. 1. Optical properties and factors affecting their distribution , 1996 .

[31]  A. Gayoso Bloom of Emiliania huxleyi (Prymnesiophyceae) in the western South Atlantic Ocean , 1995 .

[32]  D. M. Nelson,et al.  Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean , 2001 .

[33]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[34]  J. M. Frye,et al.  A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability , 2004 .

[35]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[36]  P. Ziveri,et al.  Calculation of coccolith volume and its use in calibration of carbonate flux estimates , 2000 .

[37]  A. Longhurst Ecological Geography of the Sea , 1998 .

[38]  M. Heldal,et al.  Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea , 1996 .

[39]  Wallace S. Broecker,et al.  Neutralization of Fossil Fuel CO2 by Marine Calcium Carbonate , 1977 .

[40]  Richard J. Geider,et al.  LIGHT AND TEMPERATURE DEPENDENCE OF THE CARBON TO CHLOROPHYLL a RATIO IN MICROALGAE AND CYANOBACTERIA: IMPLICATIONS FOR PHYSIOLOGY AND GROWTH OF PHYTOPLANKTON , 1987 .

[41]  W. Balch,et al.  Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine , 1991 .

[42]  Robert W. Buddemeier,et al.  Calcification and CO 2 , 2000 .

[43]  F. Mackenzie,et al.  Changes in Surface Morphology of Calcite Exposed to the Oceanic Water Column , 1997 .

[44]  W. Balch,et al.  Monsoonal forcing of calcification in the Arabian Sea , 2000 .

[45]  J. Ishizaka,et al.  Special Features and Applications of CZCS Data in Asian Waters , 1993 .

[46]  D. Harbour,et al.  Evolution And Structure Of A Shelf Coccolithophore Bloom In The Western English-Channel , 1995 .

[47]  Richard A. Krishfield,et al.  Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean , 2002 .

[48]  W. Broecker,et al.  The cause of the glacial to interglacial atmospheric CO2 change: A Polar Alkalinity Hypothesis , 1989 .

[49]  M. D. Keller,et al.  Dimethylsulfide production in marine phytoplankton. , 1989 .

[50]  J. Vrubel,et al.  Development of Transplantation Immunity in the Regionalized Lymph Node following Extirpation of the Original Regional Lymph Node , 1962, Nature.

[51]  W. Balch,et al.  Calcification rates in the equatorial Pacific along 140°W , 1996 .

[52]  P. Wal,et al.  Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi , 1995 .

[53]  W. Balch,et al.  White Waters of the Gulf of Maine , 1988 .

[54]  T. Bickert,et al.  Coccoliths in sediment traps from the Norwegian Sea , 1990 .

[55]  A. Knap,et al.  Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification? , 1996 .

[56]  R. Wollast The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle , 1994 .

[57]  R. Feely,et al.  Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements , 1998, Nature.

[58]  V. Smetacek,et al.  Carbon dioxide limitation of marine phytoplankton growth rates , 1993, Nature.

[59]  M. D. Keller,et al.  Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine , 1993 .

[60]  B. Heimdal,et al.  Emiliania huxleyi. Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord , 1994 .

[61]  J. Napp,et al.  Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean, and Biology , 2001 .

[62]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[63]  P. I. Miller,et al.  The cause of bright waters in the Bering Sea in winter , 2003 .

[64]  Patrick M. Holligan,et al.  The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration , 1996 .

[65]  G. Tarran,et al.  Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): An overview , 2002 .

[66]  E. Maier‐Reimer,et al.  Dynamics of fossil fuel CO2 neutralization by marine CaCO3 , 1998 .

[67]  D. Clark Phytoplankton Pigment Algorithms for the Nimbus-7 CZCS , 1981 .

[68]  J. Steele,et al.  FURTHER RELATIONS BETWEEN PRIMARY PRODUCTION, CHLOROPHYLL, AND PARTICULATE CARBON , 1962 .

[69]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[70]  E. Paasche Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae) , 1998 .

[71]  W. Balch,et al.  Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi , 1992 .

[72]  Glenn E. Shaw,et al.  Bio-controlled thermostasis involving the sulfur cycle , 1983 .

[73]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[74]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[75]  W. Takahashi,et al.  High-reflectance Waters of Possible Coccolithophore Blooms in NW Pacific : Analysis of 1979-86 Nimbus-7/CZCS Data Set , 1995 .

[76]  J. Toggweiler,et al.  Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model , 1992 .

[77]  T. Cokacar,et al.  Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery , 2001 .

[78]  E. Paasche Reduced coccolith calcite production under light-limited growth: a comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae) , 1999 .

[79]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[80]  U. Riebesell,et al.  Effects of increasing atmospheric CO2 on phytoplankton communities and the biological carbon pump , 2001 .

[81]  E. Buitenhuis,et al.  Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea , 1996 .

[82]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[83]  H. Gordon,et al.  Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi , 2001 .

[84]  H. Gordon Atmospheric correction of ocean color imagery in the Earth Observing System era , 1997 .

[85]  W. Balch Re-evaluation of the physiological ecology of coccolithophores , 2004 .