A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

Abstract. Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

[1]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[2]  F. Giorgi,et al.  Modeling of sea salt in a regional climate model: Fluxes and radiative forcing , 2008 .

[3]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[4]  Mian Chin,et al.  A global three‐dimensional model of tropospheric sulfate , 1996 .

[5]  Menghua Wang,et al.  Study of the Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products , 2005 .

[6]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[7]  R. W. Austin,et al.  Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery , 1980, Science.

[8]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[9]  Jean-Francois Lamarque,et al.  Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation: INTERACTIVE CHEMISTRY IN LMDZ , 2004 .

[10]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[11]  F. Giorgi,et al.  Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties , 2008 .

[12]  E. Sánchez,et al.  Future climate extreme events in the Mediterranean simulated by a Regional Climate Model , 2004 .

[13]  G. Krekov,et al.  Models of atmospheric aerosols , 1993 .

[14]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[15]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[16]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[17]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Joos,et al.  Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model , 2007, Proceedings of the National Academy of Sciences.

[19]  Jessica Blunden,et al.  State of the climate in 2010 , 2011 .

[20]  Florence Sevault,et al.  Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration , 2011 .

[21]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[22]  J. Pal,et al.  Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation , 2006 .

[23]  F. Monteleone,et al.  Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust , 2009 .

[24]  M. Déqué,et al.  Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model , 2003 .

[25]  J. Lamarque,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model , 2012 .

[26]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[27]  Mihalis Vrekoussis,et al.  Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements , 2007 .

[28]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[29]  Olivier Favez,et al.  Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning , 2008 .

[30]  Alexandros Papayannis,et al.  Characterization of the vertical structure of Saharan dust export to the Mediterranean basin , 1999 .

[31]  C. Moulin,et al.  Long term (1983-1994) calibration of the Meteosat solar (VIS) channel using desert and ocean targets , 1996 .

[32]  R. Santer,et al.  Evaluation of the MERIS aerosol product over land with AERONET , 2008 .

[33]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[34]  D. Lüthi,et al.  Implementation and evaluation of aerosol and cloud microphysics in a regional climate model , 2011 .

[35]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[36]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[37]  F. Giorgi,et al.  Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters , 2001 .

[38]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[39]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[40]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[41]  J. Roger,et al.  Calculation of key optical properties of the main anthropogenic aerosols over the Western French coastal Mediterranean Sea , 2011 .

[42]  P. Adams,et al.  Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations , 2009 .

[43]  Jeremy S. Pal,et al.  An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation , 2010 .

[44]  François Dulac,et al.  Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation , 1997, Nature.

[45]  Yoram J. Kaufman,et al.  Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000 , 2004 .

[46]  Daniela Jacob,et al.  A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin , 2001 .

[47]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[48]  J. Baldasano,et al.  Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations , 2009 .

[49]  Giorgio Fiocco,et al.  Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements , 2003 .

[50]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[51]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[52]  W. Hong,et al.  The impacts of optical properties on radiative forcing due to dust aerosol , 2006 .

[53]  F. Dulac,et al.  Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs , 2010 .

[54]  Jean-François Léon,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies , 2011 .

[55]  B. Mayer,et al.  Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment , 2012 .

[56]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[57]  J. Lamarque,et al.  Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations , 2012 .

[58]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[59]  F. Bréon,et al.  Global observation of anthropogenic aerosols from satellite , 2001 .

[60]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[61]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[62]  Valery Spiridonov,et al.  Model ALADIN as regional climate model for Central and Eastern Europe , 2010 .

[63]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[64]  Jean-Claude Roger,et al.  One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing , 2008 .

[65]  V. Masson,et al.  Satellite climatology of African dust transport in the Mediterranean atmosphere , 1998 .

[66]  M. Chin,et al.  Variability of marine aerosol fine‐mode fraction and estimates of anthropogenic aerosol component over cloud‐free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS) , 2009 .

[67]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[68]  Maurice Herman,et al.  Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model , 2005 .

[69]  A. Robock Volcanic eruptions and climate , 2000 .

[70]  J. R. Herman,et al.  UV 380 NM Reflectivity of the Earth's Surface , 2001 .

[71]  Ivan Güttler,et al.  RegCM4 : model description and preliminary tests over multiple CORDEX domains , 2012 .

[72]  R. Kahn,et al.  Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations , 2013 .

[73]  Jean-Jacques Morcrette,et al.  Influence of aerosol climatology on forecasts of the African Easterly Jet , 2005 .

[74]  Sylvie Thiria,et al.  Monitoring aerosol optical properties over the Mediterranean from SeaWiFS images using a neural network inversion , 2004 .

[75]  Didier Tanré,et al.  Remote sensing of aerosols over the oceans using MSG/SEVIRI imagery , 2005 .

[76]  C. Liousse,et al.  Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain , 2006 .

[77]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[78]  O. Torres,et al.  Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data , 2009 .

[79]  F. Giorgi,et al.  Climate change projections for the Mediterranean region , 2008 .

[80]  Robert H. Evans,et al.  Assessment of Saharan dust absorption in the visible from SeaWiFS imagery , 2001 .

[81]  C. Hohenegger,et al.  Sensitivity of the European climate to aerosol forcing as simulated with a regional climate model , 2005 .

[82]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[83]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[84]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[85]  J. Terradas,et al.  Saharan dust and the atmospheric inputs of elements and alkalinity to mediterranean ecosystems , 1993, Water, Air, and Soil Pollution.

[86]  André Morel,et al.  A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones , 1999 .

[87]  E. Dutton,et al.  Do Satellites Detect Trends in Surface Solar Radiation? , 2004, Science.

[88]  Wei Li,et al.  The impacts of optical properties on radiative forcing due to dust aerosol , 2006 .

[89]  Michel Crépon,et al.  21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model , 2008 .

[90]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[91]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[92]  François Dulac,et al.  Long‐term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP‐B2 data: 1. Methodology and preliminary results for 1983–1994 in the Mediterranean , 1997 .

[93]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[94]  F. Bréon,et al.  An evaluation of satellite aerosol products against sunphotometer measurements , 2011 .

[95]  Oleg Dubovik,et al.  Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE , 2003 .

[96]  F. Giorgi,et al.  Implementation and testing of a desert dust module in a regional climate model , 2006 .

[97]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[98]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[99]  Xavier Querol,et al.  Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000-2006) MODIS data , 2008 .

[100]  Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model , 2011 .

[101]  R. Gautam,et al.  Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010 , 2012 .

[102]  Pascal Yiou,et al.  Decline of fog, mist and haze in Europe over the past 30 years , 2009 .

[103]  D. Lüthi,et al.  Intercomparison of aerosol climatologies for use in a regional climate model over Europe , 2011 .

[104]  Johannes W. Kaiser,et al.  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System : Forward modeling , 2009 .

[105]  Samuel Somot,et al.  Analysis of heavy precipitation for France using high resolution ALADIN RCM simulations , 2008 .

[106]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[107]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[108]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[109]  David Antoine,et al.  Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations , 2006 .

[110]  D. Chu,et al.  Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction , 2005 .

[111]  I. Vardavas,et al.  Assessment of the MODIS Collections C005 and C004 aerosol optical depth products over the Mediterranean basin , 2008 .

[112]  Jacques Pelon,et al.  Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy , 2006 .

[113]  S. Somot,et al.  Dust emission size distribution impact on aerosol budget and radiative forcing over the Mediterranean region: a regional climate model approach , 2012 .

[114]  A. J. Simmons,et al.  Aerosol analysis and forecast in the ECMWF Integrated Forecast System : Data assimilation , 2008 .

[115]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[116]  M. Perrone,et al.  Saharan dust particle properties over the central Mediterranean , 2006 .

[117]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[118]  N. Mahowald,et al.  Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database , 2008 .

[119]  Christian Mätzler,et al.  Aerosol and cloud effects on solar brightening and the recent rapid warming , 2008 .

[120]  F. Dulac,et al.  Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during a STAAARTE campaign (7 June 1997) , 2003 .

[121]  Jean-Claude Roger,et al.  Atmospheric correction over land for MERIS , 1999 .

[122]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[123]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[124]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[125]  D. Diner,et al.  Intercomparison of desert dust optical depth from satellite measurements , 2012 .

[126]  M. Perrone,et al.  Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties , 2008 .