Integrated interactions database: tissue-specific view of the human and model organism interactomes

IID (Integrated Interactions Database) is the first database providing tissue-specific protein–protein interactions (PPIs) for model organisms and human. IID covers six species (S. cerevisiae (yeast), C. elegans (worm), D. melonogaster (fly), R. norvegicus (rat), M. musculus (mouse) and H. sapiens (human)) and up to 30 tissues per species. Users query IID by providing a set of proteins or PPIs from any of these organisms, and specifying species and tissues where IID should search for interactions. If query proteins are not from the selected species, IID enables searches across species and tissues automatically by using their orthologs; for example, retrieving interactions in a given tissue, conserved in human and mouse. Interaction data in IID comprises three types of PPI networks: experimentally detected PPIs from major databases, orthologous PPIs and high-confidence computationally predicted PPIs. Interactions are assigned to tissues where their proteins pairs or encoding genes are expressed. IID is a major replacement of the I2D interaction database, with larger PPI networks (a total of 1,566,043 PPIs among 68,831 proteins), tissue annotations for interactions, and new query, analysis and data visualization capabilities. IID is available at http://ophid.utoronto.ca/iid.

[1]  Ben Lehner,et al.  Tissue specificity and the human protein interaction network , 2009, Molecular systems biology.

[2]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[3]  Karin Breuer,et al.  InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation , 2012, Nucleic Acids Res..

[4]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[5]  Yukiko Matsuoka,et al.  Adding Protein Context to the Human Protein-Protein Interaction Network to Reveal Meaningful Interactions , 2013, PLoS Comput. Biol..

[6]  Ilan Y. Smoly,et al.  The TissueNet database of human tissue protein–protein interactions , 2012, Nucleic Acids Res..

[7]  Ralf Herwig,et al.  The ConsensusPathDB interaction database: 2013 update , 2012, Nucleic Acids Res..

[8]  Andrei L. Turinsky,et al.  Navigating the global protein-protein interaction landscape using iRefWeb. , 2014, Methods in molecular biology.

[9]  Wei Liu,et al.  Construction and Analyses of Human Large-Scale Tissue Specific Networks , 2014, PloS one.

[10]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[11]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[12]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[13]  B. Honig,et al.  Structure-based prediction of protein-protein interactions on a genome-wide scale , 2012, Nature.

[14]  Carl Kingsford,et al.  The power of protein interaction networks for associating genes with diseases , 2010, Bioinform..

[15]  I. Jurisica,et al.  Unequal evolutionary conservation of human protein interactions in interologous networks , 2007, Genome Biology.

[16]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[17]  Haiyuan Yu,et al.  Network-based methods for human disease gene prediction. , 2011, Briefings in functional genomics.

[18]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[19]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[20]  Carlos Prieto,et al.  Protein interactions: mapping interactome networks to support drug target discovery and selection. , 2012, Methods in molecular biology.

[21]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[22]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[23]  Michael Schroeder,et al.  Large-scale De Novo Prediction of Physical Protein-Protein Association* , 2011, Molecular & Cellular Proteomics.

[24]  Janez Demsar,et al.  A combinatorial approach to graphlet counting , 2014, Bioinform..

[25]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[26]  Hyeong Jun An,et al.  Estimating the size of the human interactome , 2008, Proceedings of the National Academy of Sciences.

[27]  Damian Szklarczyk,et al.  Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell‐lines , 2015, Proteomics.

[28]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[29]  Yukiko Matsuoka,et al.  Tissue-specific subnetworks and characteristics of publicly available human protein interaction databases , 2011, Bioinform..

[30]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[31]  Tamás Korcsmáros,et al.  ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis , 2014, Nucleic Acids Res..

[32]  Quaid Morris,et al.  Combining many interaction networks to predict gene function and analyze gene lists , 2012, Proteomics.

[33]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[34]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[35]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[36]  Igor Jurisica,et al.  In silico prediction of physical protein interactions and characterization of interactome orphans , 2014, Nature Methods.

[37]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..