Prediction and tolerance intervals with transformation and/or weighting

We consider estimation of quantiles and construction of prediction and tolerance intervals for a new response following a possibly nonlinear regression fit with transformation and/or weighting. We consider the case of normally distributed errors and, to a lesser extent, the nonparametric case in which the error distribution is unknown. Quantile estimation here follows standard theory, although we introduce a simple computational device for likelihood ratio testing and confidence intervals. Prediction and tolerance intervals are somewhat more difficult to obtain. We show that the effect of estimating parameters when constructing tolerance intervals can be expected to be greater than the effect in the prediction problem. Improved prediction and tolerance intervals are constructed based on resampling techniques. In the tolerance interval case, a simple analytical correction is introduced. We apply these methods to the prediction of automobile stopping distances and salmon production using, respectively, a he...

[1]  Noel A Cressie,et al.  A Transformation/Weighting Model for Estimating Michaelis-Menten Parameters, , 1989 .

[2]  L. Leemis Applied Linear Regression Models , 1991 .

[3]  W. Ricker Stock and Recruitment , 1954 .

[4]  David Ruppert,et al.  Transformations to symmetry and homoscedasticity , 1989 .

[5]  Thomas J. DiCiccio,et al.  Likelihood inference for linear regression models , 1988 .

[6]  R. Beran Calibrating Prediction Regions , 1990 .

[7]  R. Carroll,et al.  Variance Function Estimation , 1987 .

[8]  W. Ricker,et al.  A Revised Interpretation of the History of the Skeena River Sockeye Salmon (Oncorhynchus nerka) , 1975 .

[9]  D. Ruppert,et al.  Data Transformations in Regression Analysis with Applications to Stock—Recruitment Relationships , 1985 .

[10]  David R. Cox,et al.  Prediction Intervals and Empirical Bayes Confidence Intervals , 1975, Journal of Applied Probability.

[11]  Edna Schechtman,et al.  Efficient bootstrap simulation , 1986 .

[12]  R. Stine Bootstrap Prediction Intervals for Regression , 1985 .

[13]  Ronald D. Snee,et al.  An Alternative Approach to Fitting Models When Re-expression of the Response is Useful , 1986 .

[14]  Robert W. Mee Normal Distribution Tolerance Limits for Stratified Random Samples , 1989 .

[15]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[16]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[17]  Karl A. Fox,et al.  Methods of Correlation and Regression Analysis. , 1930 .

[18]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[19]  D. Cox,et al.  An Analysis of Transformations Revisited, Rebutted , 1982 .

[20]  D. Hinkley,et al.  The Analysis of Transformed Data , 1984 .

[21]  George A. Milliken,et al.  Simultaneous confidence bands for nonlinear regression models , 1982 .

[22]  Peter Hall,et al.  On efficient bootstrap simulation , 1989 .

[23]  W. Loh,et al.  Calibrating Confidence Coefficients , 1987 .

[24]  D. Ruppert,et al.  The Analysis of Transformed Data: Comment , 1984 .

[25]  Comment: Distinguishing between the Scale of the Estimand and the Transformation to Normality , 1984 .

[26]  V. Chinchilli,et al.  The Use of Box-Cox Transformations in the Development of Multivariate Tolerance Regions with Applications to Clinical Chemistry , 1988 .

[27]  John Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[28]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[29]  Corwin L. Atwood,et al.  Approximate Tolerance Intervals, Based on Maximum Likelihood Estimates , 1984 .

[30]  D. Ruppert,et al.  Random-Effect Models in Nonlinear Regression with Applications to Bioassay , 1989 .