On the Price of Proactivizing Round-Optimal Perfectly Secret Message Transmission

In a network of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> nodes (modeled as a digraph), the goal of a perfectly secret message transmission (<monospace>PSMT</monospace>) protocol is to replicate sender’s message <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> at the receiver’s end without revealing any information about <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> to a computationally unbounded adversary that eavesdrops on any <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> nodes. The adversary may be mobile too that is, it may eavesdrop on a different set of <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> nodes in different rounds. We prove a necessary and sufficient condition on the synchronous network for the existence of <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>-round <monospace>PSMT</monospace> protocols, for any given <inline-formula> <tex-math notation="LaTeX">$r > 0$ </tex-math></inline-formula>; further, we show that round-optimality is achieved without trading-off the communication complexity; specifically, our protocols have an overall communication complexity of <inline-formula> <tex-math notation="LaTeX">$O(n)$ </tex-math></inline-formula> elements of a finite field to perfectly transmit one field element. Apart from optimality/scalability, two interesting implications of our results are: 1) <italic>adversarial mobility does not affect its tolerability:</italic> <monospace>PSMT</monospace> tolerating a static <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-adversary is possible <italic>if and only if</italic> <monospace>PSMT</monospace> tolerating mobile <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-adversary is possible; and 2) <italic>mobility does not affect the round optimality:</italic> the fastest <monospace>PSMT</monospace> protocol tolerating a static <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-adversary is <italic>not faster</italic> than the one tolerating a mobile <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-adversary.

[1]  K. Srinathan,et al.  Unconditionally Reliable Message Transmission in Directed Hypergraphs , 2008, CANS.

[2]  Matthias Fitzi,et al.  Towards Optimal and Efficient Perfectly Secure Message Transmission , 2007, TCC.

[3]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[4]  Ludovic Renou,et al.  Secure message transmission on directed networks , 2014 .

[5]  K. Srinathan,et al.  Possibility and complexity of probabilistic reliable communication in directed networks , 2006, PODC '06.

[6]  Matthias Fitzi,et al.  Trading Correctness for Privacy in Unconditional Multi-Party Computation ? Corrected Version ?? , 1998 .

[7]  K. Srinathan,et al.  Asynchronous Secure Communication Tolerating Mixed Adversaries , 2002, ASIACRYPT.

[8]  K. Srinathan,et al.  Minimal Connectivity for Unconditionally Secure Message Transmission in Synchronous Directed Networks , 2011, ICITS.

[9]  Ueli Maurer,et al.  Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract) , 1997, PODC '97.

[10]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[11]  Matthew K. Franklin,et al.  Secure hypergraphs: privacy from partial broadcast , 1995, STOC '95.

[12]  K. Srinathan,et al.  Round-Optimal Perfectly Secret Message Transmission with Linear Communication Complexity , 2015, ICITS.

[13]  K. Srinathan,et al.  Unconditionally secure message transmission in arbitrary directed synchronous networks tolerating generalized mixed adversary , 2009, ASIACCS '09.

[14]  K. Srinathan,et al.  Perfectly Secure Message Transmission in Directed Networks Tolerating Threshold and Non Threshold Adversary , 2007, CANS.

[15]  Moti Yung,et al.  Perfectly secure message transmission , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[16]  K. Srinathan,et al.  Brief Announcement: Synchronous Las Vegas URMT Iff Asynchronous Monte Carlo URMT , 2010, DISC.

[17]  C. Pandu Rangan,et al.  Efficient Perfectly Reliable and Secure Message Transmission Tolerating Mobile Adversary , 2008, ACISP.

[18]  K. Srinathan,et al.  Secure message transmission in asynchronous networks , 2011, J. Parallel Distributed Comput..

[19]  K. Srinathan,et al.  Secure Message Transmission in Asynchronous Directed Graphs , 2011, INDOCRYPT.

[20]  Rafail Ostrovsky,et al.  How to withstand mobile virus attacks (extended abstract) , 1991, PODC '91.

[21]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[22]  Reihaneh Safavi-Naini,et al.  On Optimal Secure Message Transmission by Public Discussion , 2009, IEEE Transactions on Information Theory.

[23]  Hosame Abu-Amara,et al.  Perfectly secure message transmission in asynchronous networks , 1995, Proceedings.Seventh IEEE Symposium on Parallel and Distributed Processing.

[24]  K. Srinathan,et al.  On the trade-off between network connectivity, round complexity, and communication complexity of reliable message transmission , 2012, JACM.

[25]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[26]  Matthew K. Franklin,et al.  Secure hypergraphs: privacy from partial broadcast (Extended Abstract). , 1995, STOC 1995.

[27]  K. Srinathan,et al.  On perfectly secure communication over arbitrary networks , 2002, PODC '02.

[28]  Andrew V. Goldberg,et al.  Efficient maximum flow algorithms , 2014, CACM.

[29]  K. Srinathan,et al.  Perfectly Reliable and Secure Communication Tolerating Static and Mobile Mixed Adversary , 2008, ICITS.

[30]  K. Srinathan,et al.  On Minimal Connectivity Requirement for Secure Message Transmission in Asynchronous Networks , 2009, ICDCN.

[31]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[32]  Yongge Wang,et al.  Perfectly Secure Message Transmission Revisited , 2008, IEEE Trans. Inf. Theory.

[33]  K. Srinathan,et al.  On Proactive Perfectly Secure Message Transmission , 2007, ACISP.

[34]  K. Srinathan,et al.  Interplay between (im)perfectness, synchrony and connectivity: The case of reliable message transmission , 2013, Theor. Comput. Sci..

[35]  K. Srinathan,et al.  Asynchronous Perfectly Secure Computation Tolerating Generalized Adversaries , 2002, ACISP.

[36]  Matthias Fitzi,et al.  Trading Correctness for Privacy in Unconditional Multi-Party Computation (Extended Abstract) , 1998, CRYPTO.

[37]  Kaoru Kurosawa,et al.  Truly Efficient $2$-Round Perfectly Secure Message Transmission Scheme , 2009, IEEE Transactions on Information Theory.

[38]  Matthew K. Franklin,et al.  Secure Communication in Minimal Connectivity Models , 2000, Journal of Cryptology.