Relationship of algebraic theories to powersets over objects in Set and Set × C

This paper deals with a particular question-When do powersets in lattice-valued mathematics form algebraic theories (or monads) in clone form? Our approach in this and related papers is to consider ''powersets over objects'' in the ground categories Set and SetxC from the standpoint of algebraic theories in clone form (C is a particular subcategory of the dual of the category of semi-quantales). For both fixed-basis powersets over objects of Set and variable-basis powersets over objects of SetxC, necessary and sufficient conditions are found under which the family of all such powersets over a ground object forms an algebraic theory in clone form of standard construction. In such results a distinguished role emerges for unital quantales.

[1]  U. Höhle,et al.  A general theory of fuzzy topological spaces , 1995 .

[2]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[3]  Ulrich Höhle,et al.  Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory , 1998 .

[4]  Patrik Eklund A comparison of lattice-theoretic approaches to fuzzy topology , 1986 .

[5]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[6]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[7]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[8]  Stephen E. Rodabaugh,et al.  POWERSET OPERATOR FOUNDATIONS FOR POINT-SET LATTICE-THEORETIC (POSLAT) FUZZY SET THEORIES AND TOPOLOGIES , 1997 .

[9]  U. Höhle Many Valued Topology and its Applications , 2001 .

[10]  Patrik Eklund Category theoretic properties of fuzzy topological spaces , 1984 .

[11]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[12]  S. E. Rodabaugh,et al.  Topological and algebraic structures in fuzzy sets : a handbook of recent developments in the mathematics of fuzzy sets , 2003 .

[13]  Sergey A. Solovyov,et al.  On the category Set(JCPos) , 2006, Fuzzy Sets Syst..

[14]  Cosimo Guido,et al.  Structured lattices and topological categories of L-sets , 2010, Fuzzy Sets Syst..

[15]  Sergey A. Solovyov,et al.  Categories of lattice-valued sets as categories of arrows , 2006, Fuzzy Sets Syst..

[16]  H.-J. Hoehnke,et al.  Manes, E. G., Algebraic Theories, Berlin‐Heidelberg‐New York. Springer‐Verlag. 1976. IX, 356 S., DM 55,70. US $ 22.20. (Graduate Texts in Mathematics 26) , 1978 .

[17]  S. Jenei Structure Of Girard Monoids On [0,1] , 2003 .

[18]  Stephen E. Rodabaugh,et al.  Axiomatic Foundations For Uniform Operator Quasi-Uniformities , 2003 .

[19]  Stephen E. Rodabaugh,et al.  A categorical accommodation of various notions of fuzzy topology , 1983 .

[20]  C. Guido Powerset Operators Based Approach To Fuzzy Topologies On Fuzzy Sets , 2003 .

[21]  Stephen E. Rodabaugh,et al.  Categorical Frameworks for Stone Representation Theories , 1992 .

[22]  K. I. Rosenthal Quantales and their applications , 1990 .

[23]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[24]  Stephen Ernest Rodabaugh,et al.  Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..

[25]  C. J. Mulvey,et al.  Quantales: Quantal sets , 1995 .

[26]  Cosimo Guido,et al.  Structured lattices and ground categories of L-sets , 2005, Int. J. Math. Math. Sci..

[27]  Cosimo Guido,et al.  Some remarks on fuzzy powerset operators , 2002, Fuzzy Sets Syst..