Hydromechanical deep-drawing of aluminum parabolic workpieces—experiments and numerical simulation

Aluminum parabolic workpieces were formed with hydromechanical deep-drawing technology. The deep-drawing process was analyzed by using the explicit finite element method with various process parameters. Defects of wrinkling and rupture are predicted for some forming conditions, and the thickness distribution results are in good agreement with the experimental results. Thinning mainly takes place during the first third of the punch travel, while wrinkling mainly takes place during the final half-stage of the punch travel. The effects of chamber pressure and blank holding force on the deformation of the workpieces are discussed. The numerical results are compared with those obtained in the experiments.