Markov Decision Processes in Finance and Dynamic Options
暂无分享,去创建一个
[1] Heinz-Uwe Küenle,et al. Stochastische Spiele und Entscheidungsmodelle , 1986 .
[2] K. Hinderer,et al. Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter , 1970 .
[3] H. Föllmer,et al. Optional decompositions under constraints , 1997 .
[4] S. Pliska,et al. Mathematics of Derivative Securities , 1998 .
[5] On option pricing in the multidimensional Cox-Ross-Rubinstein model , 1998 .
[6] H. Leland.. On the Existence of Optimal Policies under Uncertainty , 1972 .
[7] Martin Schweizer,et al. Variance-Optimal Hedging in Discrete Time , 1995, Math. Oper. Res..
[8] Manfred Schäl,et al. On Quadratic Cost Criteria for Option Hedging , 1994, Math. Oper. Res..
[9] David M. Kreps,et al. Martingales and arbitrage in multiperiod securities markets , 1979 .
[10] N. Karoui,et al. Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .
[11] Dimitri P. Bertsekas,et al. Necessary and sufficient conditions for existence of an optimal portfolio , 1974 .
[12] N. H. Hakansson.. Optimal Entrepreneurial Decisions in a Completely Stochastic Environment , 1971 .
[13] Manfred Schäl,et al. Martingale Measures and Hedging for Discrete-Time Financial Markets , 1999, Math. Oper. Res..
[14] Robert C. Dalang,et al. Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .
[15] M. Frittelli. The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .
[16] J. Harrison,et al. Martingales and stochastic integrals in the theory of continuous trading , 1981 .
[17] M. Schweizer. Approximation pricing and the variance-optimal martingale measure , 1996 .
[18] Peter Grandits,et al. On the minimal entropy martingale measure , 2002 .
[19] Steven E. Shreve,et al. Options on a traded account: Vacation calls, vacation puts and passport options , 2000, Finance Stochastics.
[20] Walter Schachermayer,et al. A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time , 1992 .
[21] Leonard Rogers,et al. Equivalent martingale measures and no-arbitrage , 1994 .
[22] M. Motoczyński. Multidimensional Variance-Optimal Hedging in Discrete-Time Model-A General Approach , 2000 .
[23] Jean Jacod,et al. Local martingales and the fundamental asset pricing theorems in the discrete-time case , 1998, Finance Stochastics.
[24] D. Kramkov. Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .
[25] Eugene A. Feinberg,et al. Total Reward Criteria , 2002 .
[26] D. Heath,et al. Introduction to Mathematical Finance , 2000 .
[27] Freddy Delbaen,et al. On Esscher Transforms in Discrete Finance Models , 1998, ASTIN Bulletin.
[28] Mark H. A. Davis,et al. Applied Stochastic Analysis , 1991 .
[29] Manfred Schäl. Price systems constructed by optimal dynamic portfolios , 2000, Math. Methods Oper. Res..
[30] Onésimo Hernández-Lerma,et al. Controlled Markov Processes , 1965 .
[31] Ralf Korn,et al. On value preserving and growth optimal portfolios , 1999, Math. Methods Oper. Res..
[32] R. C. Merton,et al. Continuous-Time Finance , 1990 .
[33] Wolfgang J. Runggaldier,et al. A Stochastic Control Approach to Risk Management Under Restricted Information , 2000 .
[34] I. Karatzas,et al. On the pricing of contingent claims under constraints , 1996 .
[35] Hans Föllmer,et al. Optional decomposition and Lagrange multipliers , 1997, Finance Stochastics.
[36] A. G. Fakeev. Optimal Stopping Rules for Stochastic Processes with Continuous Parameter , 1970 .
[37] M. Schäl. Portfolio Optimization and Martingale Measures , 2000 .
[38] I. Karatzas. On the pricing of American options , 1988 .
[39] Peter Grandits,et al. The p-optimal martingale measure and its asymptotic relation with the minimal-entropy martingale measure , 1999 .
[40] Arie Hordijk,et al. Dynamic programming and Markov potential theory , 1974 .