Markov Decision Processes in Finance and Dynamic Options

In this paper a discrete-time Markovian model for a financial market is chosen. The fundamental theorem of asset pricing relates the existence of a martingale measure to the no-arbitrage condition. It is explained how to prove the theorem by stochastic dynamic programming via portfolio optimization. The approach singles out certain martingale measures with additional interesting properties. Furthermore, it is shown how to use dynamic programming to study the smallest initial wealth x * that allows for super-hedging a contingent claim by some dynamic portfolio. There, a joint property of the set of policies in a Markov decision model and the set of martingale measures is exploited. The approach extends to dynamic options which are introduced here and are generalizations of American options.

[1]  Heinz-Uwe Küenle,et al.  Stochastische Spiele und Entscheidungsmodelle , 1986 .

[2]  K. Hinderer,et al.  Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter , 1970 .

[3]  H. Föllmer,et al.  Optional decompositions under constraints , 1997 .

[4]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .

[5]  On option pricing in the multidimensional Cox-Ross-Rubinstein model , 1998 .

[6]  H. Leland. On the Existence of Optimal Policies under Uncertainty , 1972 .

[7]  Martin Schweizer,et al.  Variance-Optimal Hedging in Discrete Time , 1995, Math. Oper. Res..

[8]  Manfred Schäl,et al.  On Quadratic Cost Criteria for Option Hedging , 1994, Math. Oper. Res..

[9]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[10]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[11]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for existence of an optimal portfolio , 1974 .

[12]  N. H. Hakansson. Optimal Entrepreneurial Decisions in a Completely Stochastic Environment , 1971 .

[13]  Manfred Schäl,et al.  Martingale Measures and Hedging for Discrete-Time Financial Markets , 1999, Math. Oper. Res..

[14]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[15]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[16]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[17]  M. Schweizer Approximation pricing and the variance-optimal martingale measure , 1996 .

[18]  Peter Grandits,et al.  On the minimal entropy martingale measure , 2002 .

[19]  Steven E. Shreve,et al.  Options on a traded account: Vacation calls, vacation puts and passport options , 2000, Finance Stochastics.

[20]  Walter Schachermayer,et al.  A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time , 1992 .

[21]  Leonard Rogers,et al.  Equivalent martingale measures and no-arbitrage , 1994 .

[22]  M. Motoczyński Multidimensional Variance-Optimal Hedging in Discrete-Time Model-A General Approach , 2000 .

[23]  Jean Jacod,et al.  Local martingales and the fundamental asset pricing theorems in the discrete-time case , 1998, Finance Stochastics.

[24]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[25]  Eugene A. Feinberg,et al.  Total Reward Criteria , 2002 .

[26]  D. Heath,et al.  Introduction to Mathematical Finance , 2000 .

[27]  Freddy Delbaen,et al.  On Esscher Transforms in Discrete Finance Models , 1998, ASTIN Bulletin.

[28]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[29]  Manfred Schäl Price systems constructed by optimal dynamic portfolios , 2000, Math. Methods Oper. Res..

[30]  Onésimo Hernández-Lerma,et al.  Controlled Markov Processes , 1965 .

[31]  Ralf Korn,et al.  On value preserving and growth optimal portfolios , 1999, Math. Methods Oper. Res..

[32]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[33]  Wolfgang J. Runggaldier,et al.  A Stochastic Control Approach to Risk Management Under Restricted Information , 2000 .

[34]  I. Karatzas,et al.  On the pricing of contingent claims under constraints , 1996 .

[35]  Hans Föllmer,et al.  Optional decomposition and Lagrange multipliers , 1997, Finance Stochastics.

[36]  A. G. Fakeev Optimal Stopping Rules for Stochastic Processes with Continuous Parameter , 1970 .

[37]  M. Schäl Portfolio Optimization and Martingale Measures , 2000 .

[38]  I. Karatzas On the pricing of American options , 1988 .

[39]  Peter Grandits,et al.  The p-optimal martingale measure and its asymptotic relation with the minimal-entropy martingale measure , 1999 .

[40]  Arie Hordijk,et al.  Dynamic programming and Markov potential theory , 1974 .