Computational versus Psychophysical Bottom-Up Image Saliency: A Comparative Evaluation Study

The predictions of 13 computational bottom-up saliency models and a newly introduced Multiscale Contrast Conspicuity (MCC) metric are compared with human visual conspicuity measurements. The agreement between human visual conspicuity estimates and model saliency predictions is quantified through their rank order correlation. The maximum of the computational saliency value over the target support area correlates most strongly with visual conspicuity for 12 of the 13 models. A simple multiscale contrast model and the MCC metric both yield the largest correlation with human visual target conspicuity (>;0.84). Local image saliency largely determines human visual inspection and interpretation of static and dynamic scenes. Computational saliency models therefore have a wide range of important applications, like adaptive content delivery, region-of-interest-based image compression, video summarization, progressive image transmission, image segmentation, image quality assessment, object recognition, and content-aware image scaling. However, current bottom-up saliency models do not incorporate important visual effects like crowding and lateral interaction. Additional knowledge about the exact nature of the interactions between the mechanisms mediating human visual saliency is required to develop these models further. The MCC metric and its associated psychophysical saliency measurement procedure are useful tools to systematically investigate the relative contribution of different feature dimensions to overall visual target saliency.

[1]  T. Foulsham,et al.  How Does the Purpose of Inspection Influence the Potency of Visual Salience in Scene Perception? , 2007, Perception.

[2]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[3]  Kevin J. Cooke,et al.  THE ORACLE APPROACH TO TARGET ACQUISITION AND SEARCH MODELLING , 1995 .

[4]  Neil D. B. Bruce Features that draw visual attention: an information theoretic perspective , 2005, Neurocomputing.

[5]  H. Nothdurft The role of features in preattentive vision: Comparison of orientation, motion and color cues , 1993, Vision Research.

[6]  Alexander Toet,et al.  The relationship between information prioritization and visual distinctness in two progressive image transmission schemes , 2004, Pattern Recognit..

[7]  D. Nilsson,et al.  An efficient algorithm for finding the M most probable configurationsin probabilistic expert systems , 1998, Stat. Comput..

[8]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[9]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[10]  Mike J. Chantler,et al.  Modelling visual search for a target against a 1/f^beta continuous textured background. , 2008 .

[11]  John K. Tsotsos,et al.  Visual Correlates of Fixation Selection: A Look at the Spatial Frequency Domain , 2007, 2007 IEEE International Conference on Image Processing.

[12]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  L. Itti Quantitative modelling of perceptual salience at human eye position , 2006 .

[14]  Benoit M. Macq,et al.  A Rarity-Based Visual Attention Map - Application to Texture Description , 2006, 2006 International Conference on Image Processing.

[15]  John K. Tsotsos,et al.  Saliency, attention, and visual search: an information theoretic approach. , 2009, Journal of vision.

[16]  Sirko Straube,et al.  The electrophysiological correlate of saliency: Evidence from a figure-detection task , 2010, Brain Research.

[17]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[18]  Alexander Toet,et al.  Image dataset for testing search and detection models , 2001 .

[19]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[20]  Liming Zhang,et al.  New strategy for image and video quality assessment , 2010, J. Electronic Imaging.

[21]  L. Itti,et al.  Visual causes versus correlates of attentional selection in dynamic scenes , 2006, Vision Research.

[22]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[23]  Christof Koch,et al.  Visual attention and target detection in cluttered natural scenes , 2001 .

[24]  Patrick Le Callet,et al.  Does where you Gaze on an Image Affect your Perception of Quality? Applying Visual Attention to Image Quality Metric , 2007, 2007 IEEE International Conference on Image Processing.

[25]  N. Vasconcelos,et al.  Biologically plausible saliency mechanisms improve feedforward object recognition , 2010, Vision Research.

[26]  T. Foulsham,et al.  Quarterly Journal of Experimental Psychology: in press Visual saliency and semantic incongruency influence eye movements when , 2022 .

[27]  Antón García-Díaz,et al.  Saliency Based on Decorrelation and Distinctiveness of Local Responses , 2009, CAIP.

[28]  Wieske van Zoest,et al.  Bottom-up and Top-down Control in Visual Search , 2004, Perception.

[29]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[30]  Gregory Hobson,et al.  Visual detection with search: an empirical model , 1991, IEEE Trans. Syst. Man Cybern..

[31]  C. Koch,et al.  Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. , 2008, Journal of vision.

[32]  Roland J. Baddeley,et al.  High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis , 2006, Vision Research.

[33]  D. Levi Crowding—An essential bottleneck for object recognition: A mini-review , 2008, Vision Research.

[34]  Michael L. Mack,et al.  VISUAL SALIENCY DOES NOT ACCOUNT FOR EYE MOVEMENTS DURING VISUAL SEARCH IN REAL-WORLD SCENES , 2007 .

[35]  Dirk Walther,et al.  Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics. , 2006 .

[36]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[37]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[38]  M. Pomplun,et al.  Peripheral and parafoveal cueing and masking effects on saccadic selectivity in a gaze-contingent window paradigm , 2001, Vision Research.

[39]  H. Nothdurft Saliency effects across dimensions in visual search , 1993, Vision Research.

[40]  Yannis Avrithis,et al.  Spatiotemporal saliency for video classification , 2009, Signal Process. Image Commun..

[41]  J R Bloomfield,et al.  Visual Search in Complex Fields: Size Differences between Target Disc and Surrounding Discs , 1972, Human factors.

[42]  M. J. Chantler,et al.  Visual search for a target against a 1/fβ continuous textured background , 2008, Vision Research.

[43]  A. Camurri,et al.  TRACKING-DEPENDENT AND INTERACTIVE VIDEO PROJECTION , 2008 .

[44]  T. Foulsham,et al.  Saliency and scan patterns in the inspection of real-world scenes: Eye movements during encoding and recognition , 2009 .

[45]  D. Levi,et al.  The two-dimensional shape of spatial interaction zones in the parafovea , 1992, Vision Research.

[46]  T. Foulsham,et al.  Is attention necessary for object identification? Evidence from eye movements during the inspection of real-world scenes , 2008, Consciousness and Cognition.

[47]  Liming Zhang,et al.  Saliency-Based Image Quality Assessment Criterion , 2008, ICIC.

[48]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[49]  Roberto de Alencar Lotufo,et al.  Fast multidimensional parallel Euclidean distance transform based on mathematical morphology , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[50]  Sirko Straube,et al.  Visual detection and identification are not the same: Evidence from psychophysics and fMRI , 2011, Brain and Cognition.

[51]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[52]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[53]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Pietro Perona,et al.  Selective visual attention enables learning and recognition of multiple objects in cluttered scenes , 2005, Comput. Vis. Image Underst..

[55]  Liming Zhang,et al.  Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[57]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[58]  K. Ruddock,et al.  Effects of stimulus complexity on simple spatial discriminations. , 1990, Spatial vision.

[59]  Lucas Paletta,et al.  Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint , 2008, Lecture Notes in Computer Science.

[60]  Nuno Vasconcelos,et al.  Decision-Theoretic Saliency: Computational Principles, Biological Plausibility, and Implications for Neurophysiology and Psychophysics , 2009, Neural Computation.

[61]  Alexander Toet,et al.  Visual conspicuity determines human target acquisition performance , 1998 .

[62]  Liming Zhang,et al.  Biological Plausibility of Spectral Domain Approach for Spatiotemporal Visual Saliency , 2008, ICONIP.

[63]  Neil D. B. Bruce Image analysis through local information measures , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[64]  H. Nothdurft The conspicuousness of orientation and motion contrast. , 1993, Spatial vision.

[65]  Nuno Vasconcelos,et al.  The discriminant center-surround hypothesis for bottom-up saliency , 2007, NIPS.

[66]  Asha Iyer,et al.  Components of bottom-up gaze allocation in natural images , 2005, Vision Research.

[67]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[68]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  John K. Tsotsos,et al.  An Information Theoretic Model of Saliency and Visual Search , 2008, WAPCV.

[70]  Christof Koch,et al.  Comparison of feature combination strategies for saliency-based visual attention systems , 1999, Electronic Imaging.

[71]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  S. Avidan,et al.  Seam carving for content-aware image resizing , 2007, SIGGRAPH 2007.

[73]  A H Wertheim,et al.  Visual conspicuity: A new simple standard, its reliability, validity and applicability , 2010, Ergonomics.

[74]  P. Perona,et al.  Objects predict fixations better than early saliency. , 2008, Journal of vision.

[75]  F. L. Engel Visual conspicuity, directed attention and retinal locus. , 1971, Vision research.

[76]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[77]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[78]  Wim Fias,et al.  Salience maps in parietal cortex: Imaging and computational modeling , 2010, NeuroImage.

[79]  Peyman Milanfar,et al.  Nonparametric bottom-up saliency detection by self-resemblance , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[80]  Xing Xie,et al.  Salient Region Detection Using Weighted Feature Maps Based on the Human Visual Attention Model , 2004, PCM.

[81]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[82]  B. Cole,et al.  The effect of the density of background elements on the conspicuity of objects , 1982, Vision Research.

[83]  Michael Gleicher,et al.  Region Enhanced Scale-Invariant Saliency Detection , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[84]  T. Foulsham,et al.  What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. , 2008, Journal of vision.

[85]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.

[86]  Harold Pashler,et al.  Quantifying object salience by equating distractor effects , 2005, Vision Research.

[87]  Xin Chen,et al.  Real-world visual search is dominated by top-down guidance , 2006, Vision Research.

[88]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[89]  Subhransu Maji,et al.  Confidence Based updation of Motion Conspicuity in Dynamic Scenes , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[90]  Denis Pellerin,et al.  Video summarization using a visual attention model , 2007, 2007 15th European Signal Processing Conference.

[91]  Sven J. Dickinson,et al.  Active Object Recognition Integrating Attention and Viewpoint Control , 1997, Comput. Vis. Image Underst..

[92]  K. Krikke,et al.  How important is lateral masking in visual search? , 2006, Experimental Brain Research.

[93]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[94]  Michael Lindenbaum,et al.  Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Matthew H Tong,et al.  SUN: Top-down saliency using natural statistics , 2009, Visual cognition.

[96]  H. Nothdurft Feature analysis and the role of similarity in preattentive vision , 1992, Perception & psychophysics.

[97]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[98]  P. Cavanagh,et al.  The Spatial Resolution of Visual Attention , 2001, Cognitive Psychology.

[99]  Marcus Nyström,et al.  Semantic override of low-level features in image viewing - both initially and overall , 2008 .

[100]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[101]  L. Itti Author address: , 1999 .

[102]  Long Quan,et al.  Image deblurring with blurred/noisy image pairs , 2007, SIGGRAPH 2007.

[103]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[104]  Matei Mancas,et al.  Image perception : Relative influence of bottom-up and top-down attention , 2008 .

[105]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[106]  Gary Waldman,et al.  Electro-Optical Systems Performance Modeling , 1992 .

[107]  Benoît Macq,et al.  Computational Attention for Event Detection , 2007, ICVS 2007.

[108]  Laurent Itti,et al.  Interesting objects are visually salient. , 2008, Journal of vision.

[109]  F. L. Engel Visual conspicuity and selective background interference in eccentric vision. , 1974, Vision research.

[110]  M. Land,et al.  The Roles of Vision and Eye Movements in the Control of Activities of Daily Living , 1998, Perception.

[111]  Benoit M. Macq,et al.  Perceptual Image Representation , 2007, EURASIP J. Image Video Process..

[112]  W. Geisler,et al.  Separation of low-level and high-level factors in complex tasks: visual search. , 1995, Psychological review.

[113]  Frédéric Gosselin,et al.  Perceptive fields of saliency. , 2008, Journal of vision.

[114]  Yu Yang,et al.  A computational model of visual attention based on saliency maps , 2007, Appl. Math. Comput..

[115]  Antón García-Díaz,et al.  Decorrelation and Distinctiveness Provide with Human-Like Saliency , 2009, ACIVS.

[116]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[117]  Alan C. Bovik,et al.  Foveated analysis of image features at fixations , 2007, Vision Research.

[118]  Wieske van Zoest,et al.  The effects of salience on saccadic target selection , 2005 .

[119]  Marina Bloj,et al.  Real and predicted influence of image manipulations on eye movements during scene recognition. , 2010, Journal of vision.

[120]  G. Underwood,et al.  Low-level visual saliency does not predict change detection in natural scenes. , 2007, Journal of vision.

[121]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[122]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[123]  B. Cole,et al.  The effect of variability of background elements on the conspicuity of objects , 1984, Vision Research.

[124]  F. L. Engel Visual conspicuity, visual search and fixation tendencies of the eye , 1977, Vision Research.

[125]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[126]  Byoung Chul Ko,et al.  Object-of-interest image segmentation based on human attention and semantic region clustering. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[127]  Christopher M. Masciocchi,et al.  Everyone knows what is interesting: salient locations which should be fixated. , 2009, Journal of vision.

[128]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[129]  Zhaoping Li,et al.  Feature-specific interactions in salience from combined feature contrasts: evidence for a bottom-up saliency map in V1. , 2007, Journal of vision.

[130]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[131]  Alexander Toet,et al.  Test of three visual search and detection models , 2000 .

[132]  Touradj Ebrahimi,et al.  The JPEG2000 still image coding system: an overview , 2000, IEEE Trans. Consumer Electron..

[133]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[134]  P. König,et al.  Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories , 2009, Vision Research.

[135]  Simone Frintrop,et al.  A Real-time Visual Attention System Using Integral Images , 2007, ICVS 2007.