Switching visual control based on epipoles for mobile robots

In this paper, we present a visual control approach consisting in a switching control scheme based on the epipolar geometry. The method facilitates a classical teach-by-showing approach where a reference image is used to control the robot to the desired pose (position and orientation). As a result of our proposal a mobile robot carries out a smooth trajectory towards the target and the epipolar geometry model is used through the whole motion. The control scheme developed considers the motion constraints of the mobile platform in a framework based on the epipolar geometry that does not rely on artificial markers or specific models of the environment. The proposed method is designed in order to cope with the degenerate estimation case of the epipolar geometry with short baseline. Experimental evaluation has been performed in realistic indoor and outdoor settings.

[1]  Patrick Rives,et al.  Visual servoing based on epipolar geometry , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Danica Kragic,et al.  Nonholonomic epipolar visual servoing , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[4]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[5]  Ehud Rivlin,et al.  Visual homing: Surfing on the epipoles , 1997, Block Island Workshop on Vision and Control.

[6]  Giuseppe Oriolo,et al.  Epipole-based visual servoing for nonholonomic mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Philip H. S. Torr,et al.  Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting , 2002, International Journal of Computer Vision.

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[11]  Gonzalo López-Nicolás,et al.  Shortest Path Homography-Based Visual Control for Differential Drive Robots , 2007 .

[12]  Josechu J. Guerrero,et al.  Visual correction for mobile robot homing , 2005, Robotics Auton. Syst..

[13]  Giuseppe Oriolo,et al.  Image-Based Visual Servoing for Nonholonomic Mobile Robots Using Epipolar Geometry , 2007, IEEE Transactions on Robotics.

[14]  Selim Benhimane,et al.  A unified approach to visual tracking and servoing , 2005, Robotics Auton. Syst..

[15]  Koichiro Deguchi,et al.  Optimal Motion Control for Image-Based Visual Servoing by Decoupling Translation and Rotation , 1999 .

[16]  Warren E. Dixon,et al.  Homography-based visual servo regulation of mobile robots , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Patrick Rives,et al.  Vision-based Control for Car Platooning using Homography Decomposition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[18]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[19]  Nicholas R. Gans,et al.  An asymptotically stable switched system visual controller for eye in hand robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[21]  Danica Kragic,et al.  New shortest-path approaches to visual servoing , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[22]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[23]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[24]  Éric Marchand,et al.  Feature tracking for visual servoing purposes , 2005, Robotics Auton. Syst..

[25]  Philippe Martinet,et al.  Indoor Navigation of a Wheeled Mobile Robot along Visual Routes , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..