Optimal control of differential‐algebraic equations from an ordinary differential equation perspective

We study the Optimal Control Problem (OCP) for regular linear differential-algebraic systems (DAEs). To this end, we introduce the input index, which allows, on the one hand, to characterize the space of consistent initial values in terms of a Kalman-like matrix and, on the other hand, the necessary smoothness properties of the control. The latter is essential to make the problem accessible from a numerical point of view. Moreover, we derive an augmented system as the key to analyze the OCP with tools well-known from optimal control of ordinary differential equations. The new concepts of the input index and the augmented system provide easily checkable sufficient conditions which ensure that the stage costs are consistent with the differential-algebraic system.

[1]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: part II , 2002, IEEE Trans. Autom. Control..

[2]  M. Gerdts Optimal Control of ODEs and DAEs , 2011 .

[3]  Volker Mehrmann,et al.  Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index , 2008, Math. Control. Signals Syst..

[4]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[5]  Karl Worthmann,et al.  Stability and feasibility of state constrained MPC without stabilizing terminal constraints , 2014, Syst. Control. Lett..

[6]  F. Allgower,et al.  Model predictive control of linear continuous time singular systems subject to input constraints , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[7]  Jürgen Pannek,et al.  Analysis of unconstrained nonlinear MPC schemes with time varying control horizon , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[8]  A. Backes,et al.  Optimale Steuerung der linearen DAE im Fall Index 2 , 2005 .

[9]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[10]  Mark Embree,et al.  Pseudospectra of Matrix Pencils for Transient Analysis of Differential-Algebraic Equations , 2016, SIAM J. Matrix Anal. Appl..

[11]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[12]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .

[13]  L. Grüne Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .

[14]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[15]  A. Ilchmann,et al.  Model predictive control for linear differential-algebraic equations , 2018 .

[16]  Matthias Voigt,et al.  The Kalman–Yakubovich–Popov inequality for differential-algebraic systems , 2015 .

[17]  A. Ilchmann,et al.  Model predictive control for linear DAEs without terminal constraints and costs , 2018 .

[18]  P. Müller Optimal control of proper and nonproper descriptor systems , 2003 .

[19]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[20]  Hans Bock,et al.  Constrained Optimal Feedback Control of Systems Governed by Large Differential Algebraic Equations , 2007 .

[21]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[22]  F. Allgöwer,et al.  MODEL PREDICTIVE CONTROL OF CONTINUOUS TIME NONLINEAR DIFFERENTIAL ALGEBRAIC SYSTEMS , 2007 .

[23]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[24]  G. Kurina Linear-Quadratic Discrete Optimal Control Problems for Descriptor Systems in Hilbert Space , 2004 .

[25]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: Part I , 2002, IEEE Trans. Autom. Control..

[26]  Matthias Voigt,et al.  Linear-Quadratic Optimal Control of Differential-Algebraic Systems: The Infinite Time Horizon Problem with Zero Terminal State , 2019, SIAM J. Control. Optim..

[27]  L. Biegler,et al.  Control and Optimization with Differential-Algebraic Constraints , 2012 .

[28]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[29]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .

[30]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[31]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[32]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[33]  T. Berger,et al.  The quasi-Weierstraß form for regular matrix pencils , 2012 .