Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula

Another bijective proof of Stanley's hook-content formula for the generating function for semistandard tableaux of a given shape is given that does not involve the involution principle of Garsia and Milne. It is the result of a merge of the modified jeu de taquin idea from the author's previous bijective proof (1998, Discrete Math. Theoret. Comput. Sci.3, 011?032) and the Novelli?Pak?Stoyanovskii bijection (J. C. Novelli et al., 1997, Discrete Math. Theoret. Comput. Sci.1, 53?67) for the hook formula for standard Young tableaux of a given shape. This new algorithm can also be used as an algorithm for the random generation of tableaux of a given shape with bounded entries. An appropriate deformation of this algorithm gives an algorithm for the random generation of plane partitions inside a given box.

[1]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[2]  Bruce E. Sagan Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.

[3]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[4]  S. Milne,et al.  Method for constructing bijections for classical partition identities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Richard P. Stanley,et al.  Symmetries of plane partitions , 1986, J. Comb. Theory A.

[6]  R. M. Grassl,et al.  Reverse Plane Partitions and Tableau Hook Numbers , 1982 .

[7]  Jeffrey B. Remmel,et al.  A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..

[8]  T. Inui,et al.  The Symmetric Group , 1990 .

[9]  A. P. Hillman,et al.  Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.

[10]  J. Shaw Combinatory Analysis , 1917, Nature.

[11]  Dana Randall,et al.  Markov chain algorithms for planar lattice structures , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[12]  Igor Pak,et al.  A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..

[13]  David Wilson,et al.  Coupling from the past: A user's guide , 1997, Microsurveys in Discrete Probability.

[14]  Marcel Paul Schützenberger,et al.  La correspondance de Robinson , 1977 .

[15]  James Gary Propp Generating random elements of finite distributive lattices , 1997, Electron. J. Comb..

[16]  I. Pak,et al.  A bijective proof of the hook-length formula and its analogs , 1992 .

[17]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[18]  David Bruce Wilson,et al.  Determinant algorithms for random planar structures , 1997, SODA '97.

[19]  D. Foata,et al.  Combinatoire et Représentation du Groupe Symétrique , 1977 .

[20]  Christian Krattenthaler An Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1998, Discret. Math. Theor. Comput. Sci..

[21]  R. Stanley Theory and Application of Plane Partitions. Part 2 , 1971 .

[22]  D. White,et al.  Constructive combinatorics , 1986 .

[23]  Charles J. Colbourn,et al.  Two Algorithms for Unranking Arborescences , 1996, J. Algorithms.

[24]  C. Krattenthaler A determinant evaluation and some enumeration results for plane partitions , 1990 .

[25]  John R. Stembridge The Enumeration of Totally Symmetric Plane Partitions , 1995 .

[26]  Dana Randall,et al.  Markov Chain Algorithms for Planar Lattice Structures (Extended Abstract). , 1995, FOCS 1995.

[27]  David P. Robbins,et al.  The Story of 1, 2, 7, 42, 429, 7436, … , 1991 .

[28]  Greg Kuperberg Symmetries of Plane Partitions and the Permanent - Determinant Method , 1994, J. Comb. Theory, Ser. A.

[29]  Bruce E. Sagan,et al.  Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..

[30]  Barry Mazur,et al.  This is the Story. , 1952, Canadian Medical Association journal.