Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula
暂无分享,去创建一个
[1] David Bruce Wilson,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.
[2] Bruce E. Sagan. Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.
[3] J. Propp,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .
[4] S. Milne,et al. Method for constructing bijections for classical partition identities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[5] Richard P. Stanley,et al. Symmetries of plane partitions , 1986, J. Comb. Theory A.
[6] R. M. Grassl,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1982 .
[7] Jeffrey B. Remmel,et al. A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..
[8] T. Inui,et al. The Symmetric Group , 1990 .
[9] A. P. Hillman,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.
[10] J. Shaw. Combinatory Analysis , 1917, Nature.
[11] Dana Randall,et al. Markov chain algorithms for planar lattice structures , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[12] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[13] David Wilson,et al. Coupling from the past: A user's guide , 1997, Microsurveys in Discrete Probability.
[14] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[15] James Gary Propp. Generating random elements of finite distributive lattices , 1997, Electron. J. Comb..
[16] I. Pak,et al. A bijective proof of the hook-length formula and its analogs , 1992 .
[17] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[18] David Bruce Wilson,et al. Determinant algorithms for random planar structures , 1997, SODA '97.
[19] D. Foata,et al. Combinatoire et Représentation du Groupe Symétrique , 1977 .
[20] Christian Krattenthaler. An Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1998, Discret. Math. Theor. Comput. Sci..
[21] R. Stanley. Theory and Application of Plane Partitions. Part 2 , 1971 .
[22] D. White,et al. Constructive combinatorics , 1986 .
[23] Charles J. Colbourn,et al. Two Algorithms for Unranking Arborescences , 1996, J. Algorithms.
[24] C. Krattenthaler. A determinant evaluation and some enumeration results for plane partitions , 1990 .
[25] John R. Stembridge. The Enumeration of Totally Symmetric Plane Partitions , 1995 .
[26] Dana Randall,et al. Markov Chain Algorithms for Planar Lattice Structures (Extended Abstract). , 1995, FOCS 1995.
[27] David P. Robbins,et al. The Story of 1, 2, 7, 42, 429, 7436, … , 1991 .
[28] Greg Kuperberg. Symmetries of Plane Partitions and the Permanent - Determinant Method , 1994, J. Comb. Theory, Ser. A.
[29] Bruce E. Sagan,et al. Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..
[30] Barry Mazur,et al. This is the Story. , 1952, Canadian Medical Association journal.