Vanillyl alcohol oxidase.

[1]  J. Oakeshott,et al.  Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2 , 2020, Applied and Environmental Microbiology.

[2]  Marta Tortajada,et al.  Multigram Scale Enzymatic Synthesis of (R)‐1‐(4′‐Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase , 2018 .

[3]  M. Fraaije,et al.  The Biocatalytic Synthesis of Syringaresinol from 2,6-Dimethoxy-4-allylphenol in One-Pot Using a Tailored Oxidase/Peroxidase System , 2018, ACS catalysis.

[4]  R. D. de Vries,et al.  On the origin of vanillyl alcohol oxidases. , 2018, Fungal genetics and biology : FG & B.

[5]  W. V. van Berkel,et al.  A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases , 2018, Molecules.

[6]  D. Rentsch,et al.  Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway , 2017, Applied and Environmental Microbiology.

[7]  M. Fraaije,et al.  The VAO/PCMH flavoprotein family. , 2017, Archives of biochemistry and biophysics.

[8]  A. Winkler,et al.  The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions. , 2017, Archives of biochemistry and biophysics.

[9]  M. Fraaije,et al.  A Biocatalytic One-Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System , 2017 .

[10]  Victor Guallar,et al.  The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths , 2017, PLoS Comput. Biol..

[11]  M. Fraaije,et al.  Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase , 2017, The Journal of Biological Chemistry.

[12]  W. Berkel,et al.  A single loop is essential for the octamerization of vanillyl alcohol oxidase , 2016, The FEBS journal.

[13]  M. Fraaije,et al.  Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst , 2016, Chembiochem : a European journal of chemical biology.

[14]  V. Urlacher,et al.  Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (−)-pinoresinol via kinetic resolution , 2016, Microbial Cell Factories.

[15]  P. Karplus,et al.  Rationally engineered flavin‐dependent oxidase reveals steric control of dioxygen reduction , 2015, The FEBS journal.

[16]  V. Urlacher,et al.  Two‐Step One‐Pot Synthesis of Pinoresinol from Eugenol in an Enzymatic Cascade , 2015 .

[17]  M. Fraaije,et al.  Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis. , 2014, Bioorganic & Medicinal Chemistry.

[18]  M. Fraaije,et al.  Flavoprotein oxidases: classification and applications , 2013, Applied Microbiology and Biotechnology.

[19]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[20]  R. Müller,et al.  Characterization of a Novel Type of Oxidative Decarboxylase Involved in the Biosynthesis of the Styryl Moiety of Chondrochloren from an Acylated Tyrosine* , 2010, The Journal of Biological Chemistry.

[21]  N. Scrutton,et al.  What’s in a covalent bond? , 2009, The FEBS journal.

[22]  J Andrew McCammon,et al.  Multiple pathways guide oxygen diffusion into flavoenzyme active sites , 2009, Proceedings of the National Academy of Sciences.

[23]  K. Gruber,et al.  Structural and Mechanistic Studies Reveal the Functional Role of Bicovalent Flavinylation in Berberine Bridge Enzyme*♦ , 2009, The Journal of Biological Chemistry.

[24]  M. Fraaije,et al.  Identification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases*♦ , 2009, Journal of Biological Chemistry.

[25]  A. Heck,et al.  Detection of intact megaDalton protein assemblies of vanillyl‐alcohol oxidase by mass spectrometry , 2008, Protein science : a publication of the Protein Society.

[26]  Jianfeng Jin,et al.  Covalent flavinylation of vanillyl‐alcohol oxidase is an autocatalytic process , 2008, The FEBS journal.

[27]  M. Fraaije,et al.  The growing VAO flavoprotein family. , 2008, Archives of biochemistry and biophysics.

[28]  D. Janssen,et al.  Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1 , 2007, The FEBS journal.

[29]  A. Steinbüchel,et al.  Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. , 2006, Journal of biotechnology.

[30]  A. Glieder,et al.  Biochemical Evidence That Berberine Bridge Enzyme Belongs to a Novel Family of Flavoproteins Containing a Bi-covalently Attached FAD Cofactor* , 2006, Journal of Biological Chemistry.

[31]  A. Sinskey,et al.  Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol , 2006, Applied Microbiology and Biotechnology.

[32]  A. Vasella,et al.  Crystal Structure of Glucooligosaccharide Oxidase from Acremonium strictum , 2005, Journal of Biological Chemistry.

[33]  R. Bruckner,et al.  Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. , 2005, Biochemistry.

[34]  W. V. van Berkel,et al.  Laboratory-evolved Vanillyl-alcohol Oxidase Produces Natural Vanillin* , 2004, Journal of Biological Chemistry.

[35]  A. Steinbüchel,et al.  Highly Efficient Biotransformation of Eugenol to Ferulic Acid and Further Conversion to Vanillin in Recombinant Strains of Escherichia coli , 2003, Applied and Environmental Microbiology.

[36]  A. Heck,et al.  Cofactor-dependent Assembly of the Flavoenzyme Vanillyl-alcohol Oxidase* , 2002, The Journal of Biological Chemistry.

[37]  J. Clardy,et al.  New natural product families from an environmental DNA (eDNA) gene cluster. , 2002, Journal of the American Chemical Society.

[38]  A. Steinbüchel,et al.  Characterization of the eugenol hydroxylase genes (ehyA/ehyB) from the new eugenol-degrading Pseudomonas sp. strain OPS1 , 2001, Applied Microbiology and Biotechnology.

[39]  P. Halling,et al.  Tuning of the product spectrum of vanillyl‐alcohol oxidase by medium engineering , 2001, FEBS letters.

[40]  W. Berkel,et al.  Enzymatic synthesis of vanillin. , 2001, Journal of agricultural and food chemistry.

[41]  M. Fraaije,et al.  Structural Analysis of Flavinylation in Vanillyl-Alcohol Oxidase* , 2000, The Journal of Biological Chemistry.

[42]  M. Fraaije,et al.  Direction of the reactivity of vanillyl‐alcohol oxidase with 4‐alkylphenols , 2000, FEBS letters.

[43]  M. Ferrer,et al.  Inversion of stereospecificity of vanillyl-alcohol oxidase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Fraaije,et al.  Asp-170 Is Crucial for the Redox Properties of Vanillyl-alcohol Oxidase* , 2000, The Journal of Biological Chemistry.

[45]  Z. Chen,et al.  Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. , 2000, Journal of molecular biology.

[46]  M. Fraaije,et al.  Covalent Flavinylation Is Essential for Efficient Redox Catalysis in Vanillyl-alcohol Oxidase* , 1999, The Journal of Biological Chemistry.

[47]  A. Steinbüchel,et al.  Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199 , 1999, Archives of Microbiology.

[48]  M. Fraaije,et al.  University of Groningen Regio- and Stereospecific Conversion of 4-Alkylphenols by the Covalent Flavoprotein Vanillyl- Alcohol Oxidase , 1998 .

[49]  F. Drijfhout,et al.  Enantioselective hydroxylation of 4-alkylphenols by vanillyl alcohol oxidase , 1998, Biotechnology and bioengineering.

[50]  J. Benen,et al.  A novel oxidoreductase family sharing a conserved FAD-binding domain. , 1998, Trends in biochemical sciences.

[51]  M. Fraaije,et al.  Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. , 1998, European journal of biochemistry.

[52]  J. Benen,et al.  Molecular Cloning, Sequencing, and Heterologous Expression of thevaoA Gene from Penicillium simplicissimum CBS 170.90 Encoding Vanillyl-Alcohol Oxidase* , 1998, The Journal of Biological Chemistry.

[53]  W. Berkel,et al.  University of Groningen Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum , 2017 .

[54]  N. Scrutton,et al.  Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: The current state of affairs , 1998, Protein science : a publication of the Protein Society.

[55]  M. Fraaije,et al.  Catalytic Mechanism of the Oxidative Demethylation of 4-(Methoxymethyl)phenol by Vanillyl-Alcohol Oxidase. Evidence for Formation of a p-Quinone Methide Intermediate , 1997 .

[56]  A. Mozzarelli,et al.  Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. , 1997, Structure.

[57]  M. Fraaije,et al.  Crystallization and preliminary x‐ray analysis of the flavoenzyme vanillyl‐alcohol oxidase from Penicillium Simplicissimum , 1997, Proteins.

[58]  M. Fraaije,et al.  Mercuration of vanillyl‐alcohol oxidase from Penicillium simplicissimum generates inactive dimers , 1997, FEBS letters.

[59]  M. Fraaije,et al.  Enigmatic Gratuitous Induction of the Covalent Flavoprotein Vanillyl-Alcohol Oxidase in Penicillium simplicissimum , 1997, Applied and environmental microbiology.

[60]  F. S. Mathews,et al.  The Cytochrome Subunit Is Necessary for Covalent FAD Attachment to the Flavoprotein Subunit of p-Cresol Methylhydroxylase (*) , 1995, The Journal of Biological Chemistry.

[61]  W. Berkel,et al.  University of Groningen Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum.Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols Fraaije, , 2004 .

[62]  W. Berkel,et al.  Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. , 1992 .

[63]  E. D. Jong,et al.  Degradation of veratryl alcohol by Penicillium simplicissimum , 1990, Applied Microbiology and Biotechnology.

[64]  W. McIntire,et al.  Stereochemistry of 1-(4'-hydroxyphenyl)ethanol produced by hydroxylation of 4-ethylphenol by p-cresol methylhydroxylase. , 1984, The Biochemical journal.

[65]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[66]  W. Berkel,et al.  Communication. Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable noncovalently bound anionic FAD semiquinone , 2017 .

[67]  M. Aigle,et al.  Production of ferulic acid and coniferyl alcohol by conversion of eugenol using a recombinant strain of Saccharomyces cerevisiae , 2014 .

[68]  Marco W Fraaije,et al.  Occurrence and biocatalytic potential of carbohydrate oxidases. , 2006, Advances in applied microbiology.

[69]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[70]  A. Heck,et al.  New mass record , 2000 .

[71]  H. Morita,et al.  Purification and characterization of vanillyl-alcohol oxidase from Byssochlamys fulva V107. , 1999, Journal of bioscience and bioengineering.

[72]  W. Berkel,et al.  Novel enzyme makes vanillin for no apparent reason. , 1997 .

[73]  W. Hagen,et al.  Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. , 1996, European journal of biochemistry.