Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans

[1]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[2]  Corinne Le Quéré,et al.  Phytoplankton phenology in the global ocean , 2012 .

[3]  Annick Bricaud,et al.  Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations , 2004 .

[4]  E. Devred,et al.  Satellite remote-sensing observations for definitions of areas for marine conservation: Case study of the Scotian Slope, Eastern Canada , 2018, Remote Sensing of Environment.

[5]  Xiaomei Wang,et al.  Ocean color products retrieval and validation around China coast with MODIS , 2010 .

[6]  R. Doerffer,et al.  The MERIS Case 2 water algorithm , 2007 .

[7]  S. Bélanger,et al.  Evaluation of ocean color algorithms in the southeastern Beaufort Sea, Canadian Arctic: New parameterization using SeaWiFS, MODIS, and MERIS spectral bands , 2012 .

[8]  Trevor Platt,et al.  A two‐component model of phytoplankton absorption in the open ocean: Theory and applications , 2006 .

[9]  C. McClain,et al.  Calibration of SeaWiFS. II. Vicarious techniques. , 2001, Applied optics.

[10]  Maycira Costa,et al.  Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data , 2017, Remote. Sens..

[11]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[12]  T. Platt,et al.  Discrimination of diatoms from other phytoplankton using ocean-colour data , 2004 .

[13]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[14]  Pierre Larouche,et al.  Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis , 2018, Remote. Sens..

[15]  T. Platt,et al.  Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra , 1998 .

[16]  G. Evensen,et al.  Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments , 2003 .

[17]  T. Platt,et al.  Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches , 2001 .

[18]  E. Horne,et al.  Pigment transformation and vertical flux in an area of convergence in the North Atlantic , 1993 .

[19]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[20]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[21]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[22]  Peter Regner,et al.  The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms , 2015 .

[23]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[24]  R. Kudela,et al.  Simplifying Regional Tuning of MODIS Algorithms for Monitoring Chlorophyll-a in Coastal Waters , 2017, Front. Mar. Sci..

[25]  J. Garrido,et al.  Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases , 2000 .

[26]  C. Brown,et al.  Phenology of marine phytoplankton from satellite ocean color measurements , 2009 .

[27]  J. Gower On the use of satellite-measured chlorophyll fluorescence for monitoring coastal waters , 2016 .

[28]  Tiit Kutser,et al.  Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea , 2017, Remote. Sens..

[29]  David A. Siegel,et al.  Global assessment of ocean carbon export by combining satellite observations and food‐web models , 2014 .

[30]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[31]  Scott M. Robeson,et al.  Revisiting empirical ocean-colour algorithms for remote estimation of chlorophyll-a content on a global scale , 2016 .

[32]  Hervé Claustre,et al.  The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures , 1994 .

[33]  C. McClain,et al.  Empirical and semi‐analytical chlorophyll algorithms in the south‐western Atlantic coastal region (25–40°S and 60–45°W) , 2006 .

[34]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[35]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[36]  P Jeremy Werdell,et al.  Performance metrics for the assessment of satellite data products: an ocean color case study. , 2018, Optics express.