Control and system identification of a separated flow

A procedure to construct linear optimal control for separated flows is presented. Unlike previous works in which a system model is derived from the linearized Navier–Stokes equations, we use an approximate linear model for the flow system generated by a system identification method based on input-output data sequences from numerical solutions of the Navier–Stokes equations. The approximate model is used in linear quadratic Gaussian synthesis to compute feedback control laws. Various properties of the identified model are tested and discussed. The closed-loop control is applied to a two-dimensional separated boundary layer, aiming at reducing its separation bubble size.

[1]  Israel J Wygnanski,et al.  The control of flow separation by periodic excitation , 2000 .

[2]  Junwoo Lim,et al.  A linear process in wall-bounded turbulent shear flows , 2000 .

[3]  John Kim,et al.  Control of turbulent boundary layers , 2003 .

[4]  Sanjay S. Joshi,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997, Journal of Fluid Mechanics.

[5]  Y S J O S H I,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997 .

[6]  Aaron Strauss Introduction to Optimal Control Theory , 1968 .

[7]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[9]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[10]  Dan S. Henningson,et al.  State estimation in wall-bounded flow systems. Part 2. Turbulent flows , 2006, Journal of Fluid Mechanics.

[11]  Dan S. Henningson,et al.  Relaminarization of Reτ=100 turbulence using gain scheduling and linear state-feedback control , 2003 .

[12]  T. Bewley,et al.  State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows , 2005, Journal of Fluid Mechanics.

[13]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[14]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[15]  John Kim,et al.  A Singular Value Analysis of Boundary Layer Control , 2004, Proceeding of Third Symposium on Turbulence and Shear Flow Phenomena.

[16]  A. Barraud A numerical algorithm to solve AT X A - X = Q , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[17]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[18]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[19]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[20]  Philippe R. Spalart,et al.  Mechanisms of transition and heat transfer in a separation bubble , 2000, Journal of Fluid Mechanics.

[21]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[22]  Neil D. Sandham,et al.  Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment , 2000, Journal of Fluid Mechanics.

[23]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[24]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  J. S. Gibson,et al.  Least-squares estimation of input/output models for distributed linear systems in the presence of noise , 2000, Autom..

[27]  T. Schneider,et al.  A Linear Systems Approach to Flow Control , 2007 .