Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells
暂无分享,去创建一个
Liang Dong | Hadis Morkoç | Ümit Özgür | Vitaliy Avrutin | Joseph V. Mantese | H. Morkoç | S. Alpay | J. Mantese | V. Avrutin | Ü. Özgür | Liang Dong | S. P. Alpay
[1] James H. Edgar,et al. Substrates for gallium nitride epitaxy , 2002 .
[2] E. Yu,et al. Piezoelectric polarization associated with dislocations in wurtzite GaN , 1999 .
[3] Z. Romanowski,et al. Density Functional Theory (DFT) Simulations and Polarization Analysis of the Electric Field in InN/GaN Multiple Quantum Wells (MQWs) , 2010 .
[4] Qimin Yan,et al. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.
[5] S. Gwo,et al. Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction : Measurement of intrinsic band lineup , 2008 .
[6] S. Aloni,et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.
[7] J. W. Matthews,et al. Defects in epitaxial multilayers , 1974 .
[8] David Holec,et al. Critical thickness calculations for InGaN/GaN , 2007 .
[9] Junqiao Wu,et al. When group-III nitrides go infrared: New properties and perspectives , 2009 .
[10] Colombo,et al. Valence-band offsets at strained Si/Ge interfaces. , 1991, Physical review. B, Condensed matter.
[11] S. Alpay,et al. Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions , 2011 .
[12] C. Shih,et al. Band Offsets of InN/GaN Interface , 2005 .
[13] S. Alpay,et al. Polarization, piezoelectric properties, and elastic coefficients of InxGa1−xN solid solutions from first principles , 2012, Journal of Materials Science.
[14] Jacek A. Majewski,et al. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .
[15] Jingbo Li,et al. Strain relaxation and band-gap tunability in ternary InxGa1-xN nanowires , 2008 .
[16] Baroni,et al. Ab initio calculation of the band offset at strained GaAs/InAs (001) heterojunctions. , 1993, Physical review. B, Condensed matter.
[17] Vincenzo Fiorentini,et al. MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .
[18] J. Timler,et al. Conduction band offset at the InN∕GaN heterojunction , 2007 .
[19] Shuji Nakamura,et al. The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .
[20] F. Bechstedt,et al. Linear optical properties in the projector-augmented wave methodology , 2006 .
[21] George T. Wang,et al. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays. , 2011, Optics express.
[22] Jackson,et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.
[23] G. Scuseria,et al. Hybrid functionals based on a screened Coulomb potential , 2003 .
[24] Marc Ilegems,et al. Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .
[25] Vincenzo Fiorentini,et al. Nonlinear macroscopic polarization in III-V nitride alloys , 2001 .
[26] M. Schlüter,et al. Density-Functional Theory of the Energy Gap , 1983 .
[27] A. N. Smirnov,et al. Experimental and theoretical studies of phonons in hexagonal InN , 1999 .
[28] B. Delley,et al. Built-in electric fields and valence band offsets in InN/GaN(0001) superlattices: First-principles investigations , 2011 .
[29] Hadis Morkoç,et al. Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .
[30] Band engineering at interfaces : Theory and numerical experiments , 1998 .
[31] H. Masui,et al. Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.
[32] Oliver Ambacher,et al. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .
[33] S. M. Durbin,et al. InN/GaN valence band offset : high-resolution x-ray photoemission spectroscopy measurements , 2008 .
[34] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[35] S. Gwo,et al. Natural band alignments of InN/GaN/AlN nanorod heterojunctions , 2011 .
[36] A. N. Stroh. Dislocations and Cracks in Anisotropic Elasticity , 1958 .
[37] D. Kim,et al. High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .
[38] S. Denbaars,et al. Stress relaxation and critical thickness for misfit dislocation formation in (101¯0) and (3031¯) InGaN/GaN heteroepitaxy , 2012 .
[39] Hongxing Jiang,et al. Single phase InxGa1−xN(0.25≤x≤0.63) alloys synthesized by metal organic chemical vapor deposition , 2008 .
[40] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[41] R. Pillai,et al. Molecular beam epitaxy growth of InGaN-GaN superlattices for optoelectronic devicesa) , 2011 .
[42] Moon-Deock Kim,et al. Reduction of internal polarization fields in InGaN quantum wells by InGaN/AlGaN ultra-thin superlattice barriers with different indium composition , 2011 .
[43] V. Nagarajan,et al. Can interface dislocations degrade ferroelectric properties , 2004 .