Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells

The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN//[12¯10]GaN and [0001]InGaN//[0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN//[101¯0]GaN and [12¯10]InGaN//[12¯10]GaN epitaxial alignments, the valen...

[1]  James H. Edgar,et al.  Substrates for gallium nitride epitaxy , 2002 .

[2]  E. Yu,et al.  Piezoelectric polarization associated with dislocations in wurtzite GaN , 1999 .

[3]  Z. Romanowski,et al.  Density Functional Theory (DFT) Simulations and Polarization Analysis of the Electric Field in InN/GaN Multiple Quantum Wells (MQWs) , 2010 .

[4]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[5]  S. Gwo,et al.  Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction : Measurement of intrinsic band lineup , 2008 .

[6]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[7]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[8]  David Holec,et al.  Critical thickness calculations for InGaN/GaN , 2007 .

[9]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[10]  Colombo,et al.  Valence-band offsets at strained Si/Ge interfaces. , 1991, Physical review. B, Condensed matter.

[11]  S. Alpay,et al.  Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions , 2011 .

[12]  C. Shih,et al.  Band Offsets of InN/GaN Interface , 2005 .

[13]  S. Alpay,et al.  Polarization, piezoelectric properties, and elastic coefficients of InxGa1−xN solid solutions from first principles , 2012, Journal of Materials Science.

[14]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[15]  Jingbo Li,et al.  Strain relaxation and band-gap tunability in ternary InxGa1-xN nanowires , 2008 .

[16]  Baroni,et al.  Ab initio calculation of the band offset at strained GaAs/InAs (001) heterojunctions. , 1993, Physical review. B, Condensed matter.

[17]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[18]  J. Timler,et al.  Conduction band offset at the InN∕GaN heterojunction , 2007 .

[19]  Shuji Nakamura,et al.  The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .

[20]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[21]  George T. Wang,et al.  Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays. , 2011, Optics express.

[22]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[23]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[24]  Marc Ilegems,et al.  Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .

[25]  Vincenzo Fiorentini,et al.  Nonlinear macroscopic polarization in III-V nitride alloys , 2001 .

[26]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[27]  A. N. Smirnov,et al.  Experimental and theoretical studies of phonons in hexagonal InN , 1999 .

[28]  B. Delley,et al.  Built-in electric fields and valence band offsets in InN/GaN(0001) superlattices: First-principles investigations , 2011 .

[29]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[30]  Band engineering at interfaces : Theory and numerical experiments , 1998 .

[31]  H. Masui,et al.  Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.

[32]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[33]  S. M. Durbin,et al.  InN/GaN valence band offset : high-resolution x-ray photoemission spectroscopy measurements , 2008 .

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  S. Gwo,et al.  Natural band alignments of InN/GaN/AlN nanorod heterojunctions , 2011 .

[36]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[37]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[38]  S. Denbaars,et al.  Stress relaxation and critical thickness for misfit dislocation formation in (101¯0) and (3031¯) InGaN/GaN heteroepitaxy , 2012 .

[39]  Hongxing Jiang,et al.  Single phase InxGa1−xN(0.25≤x≤0.63) alloys synthesized by metal organic chemical vapor deposition , 2008 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  R. Pillai,et al.  Molecular beam epitaxy growth of InGaN-GaN superlattices for optoelectronic devicesa) , 2011 .

[42]  Moon-Deock Kim,et al.  Reduction of internal polarization fields in InGaN quantum wells by InGaN/AlGaN ultra-thin superlattice barriers with different indium composition , 2011 .

[43]  V. Nagarajan,et al.  Can interface dislocations degrade ferroelectric properties , 2004 .