The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy

Non-invasive estimation of brain microstructure features using diffusion MRI (dMRI)—known as Microstructure Imaging—has become an increasingly diverse and complicated field over the last decades. Multi-compartment (MC)-models, representing the measured diffusion signal as a linear combination of signal models of distinct tissue types, have been developed in many forms to estimate these features. However, a generalized implementation of MC-modeling as a whole, providing deeper insights in its capabilities, remains missing. To address this fact, we present Diffusion Microstructure Imaging in Python (Dmipy), an open-source toolbox implementing PGSE-based MC-modeling in its most general form. Dmipy allows on-the-fly implementation, signal modeling, and optimization of any user-defined MC-model, for any PGSE acquisition scheme. Dmipy follows a “building block”-based philosophy to Microstructure Imaging, meaning MC-models are modularly constructed to include any number and type of tissue models, allowing simultaneous representation of a tissue's diffusivity, orientation, volume fractions, axon orientation dispersion, and axon diameter distribution. In particular, Dmipy is geared toward facilitating reproducible, reliable MC-modeling pipelines, often allowing the whole process from model construction to parameter map recovery in fewer than 10 lines of code. To demonstrate Dmipy's ease of use and potential, we implement a wide range of well-known MC-models, including IVIM, AxCaliber, NODDI(x), Bingham-NODDI, the spherical mean-based SMT and MC-MDI, and spherical convolution-based single- and multi-tissue CSD. By allowing parameter cascading between MC-models, Dmipy also facilitates implementation of advanced approaches like CSD with voxel-varying kernels and single-shell 3-tissue CSD. By providing a well-tested, user-friendly toolbox that simplifies the interaction with the otherwise complicated field of dMRI-based Microstructure Imaging, Dmipy contributes to more reproducible, high-quality research.

[1]  Alex L. MacKay,et al.  Quantitative interpretation of NMR relaxation data , 1989 .

[2]  Arthur W Toga,et al.  Rapid and Accurate NODDI Parameter Estimation with the Spherical Mean Technique , 2018 .

[3]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[4]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[5]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[6]  Rachid Deriche,et al.  Non‐parametric graphnet‐regularized representation of dMRI in space and time , 2018, Medical Image Anal..

[7]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[8]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[9]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[10]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[11]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[12]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[13]  Daniel C Alexander,et al.  Noninvasive quantification of solid tumor microstructure using VERDICT MRI. , 2014, Cancer research.

[14]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[15]  Paul T. Callaghan,et al.  Pulsed-Gradient Spin-Echo NMR for Planar, Cylindrical, and Spherical Pores under Conditions of Wall Relaxation , 1995 .

[16]  Rainer Goebel,et al.  Robust and fast nonlinear optimization of diffusion MRI microstructure models , 2017, NeuroImage.

[17]  Daniel C. Alexander,et al.  Microstructure Imaging Sequence Simulation Toolbox , 2016, SASHIMI@MICCAI.

[18]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[19]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[20]  J. Stoker,et al.  Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas , 2016, Investigative radiology.

[21]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[22]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[23]  T. Georgiou,et al.  Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI , 2016, Scientific Reports.

[24]  Rachid Deriche,et al.  MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data , 2016, NeuroImage.

[25]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[26]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[27]  Daniel C. Alexander,et al.  Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI , 2016, NeuroImage.

[28]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[29]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[30]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[31]  F. Kruggel,et al.  Quantitative mapping of the per‐axon diffusion coefficients in brain white matter , 2015, Magnetic resonance in medicine.

[32]  Rutger Fick,et al.  Advanced dMRI Signal Modeling for Tissue Microstructure Characterization. (Modélisation Avancée du Signal dMRI pour la Caractérisation de la Microstructure Tissulaire) , 2017 .

[33]  Rachid Deriche,et al.  Orientation-Dispersed Apparent Axon Diameter via Multi-Stage Spherical Mean Optimization , 2019, Computational Diffusion MRI.

[34]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[35]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[36]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[37]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[38]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[39]  E. Stejskal Use of Spin Echoes in a Pulsed Magnetic‐Field Gradient to Study Anisotropic, Restricted Diffusion and Flow , 1965 .

[40]  Moon‐gyu Lee,et al.  Intravoxel incoherent motion diffusion‐weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters , 2017, Journal of magnetic resonance imaging : JMRI.

[41]  Flavio Dell'Acqua,et al.  Modelling white matter with spherical deconvolution: How and why? , 2018, NMR in biomedicine.

[42]  Denis Le Bihan,et al.  What can we see with IVIM MRI? , 2017, NeuroImage.

[43]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[44]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[45]  Derek K. Jones,et al.  Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter , 2016, NeuroImage.

[46]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[47]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[48]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[49]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[50]  Rachid Deriche,et al.  Diffusion MRI microstructure models with in vivo human brain Connectom data: results from a multi-group comparison , 2016, 1604.07287.

[51]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[52]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[53]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[54]  Peter F. Neher,et al.  Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM Diffusion Study Group Challenge , 2018, bioRxiv.

[55]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[56]  Jelle Veraart,et al.  Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI , 2018, NeuroImage.

[57]  Stephen Boyd,et al.  A Rewriting System for Convex Optimization Problems , 2017, ArXiv.

[58]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[59]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[60]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[61]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[62]  Per Linse,et al.  The NMR Self-Diffusion Method Applied to Restricted Diffusion. Simulation of Echo Attenuation from Molecules in Spheres and between Planes , 1993 .

[63]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[64]  Ludovico Minati,et al.  Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review , 2007 .

[65]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[66]  Michael M. McKerns,et al.  Building a Framework for Predictive Science , 2012, SciPy.

[67]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[68]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[69]  Martijn Froeling,et al.  Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients , 2018, PloS one.

[70]  Hui Zhang,et al.  PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study , 2015, Magnetic resonance in medicine.

[71]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[72]  P. V. van Zijl,et al.  Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. , 1994, Journal of magnetic resonance. Series B.

[73]  Rachid Deriche,et al.  Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use? , 2015, Medical Image Anal..

[74]  Gabriel Girard,et al.  Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI , 2019, NeuroImage.

[75]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[76]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[77]  Alejandro F. Frangi,et al.  Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding , 2018, Magnetic resonance in medicine.