A robust approach to longitudinal data analysis

The author introduces robust techniques for estimation, inference and variable selection in the analysis of longitudinal data. She first addresses the problem of the robust estimation of the regression and nuisance parameters, for which she derives the asymptotic distribution. She uses weighted estimating equations to build robust quasi-likelihood functions. These functions are then used to construct a class of test statistics for variable selection. She derives the limiting distribution of these tests and shows its robustness properties in terms of stability of the asymptotic level and power under contamination. An application to a real data set allows her to illustrate the benefits of a robust analysis. Une approche robuste pour I'analyse de donnees longitudinales L'auteure presente des techniques robustes pour l'estimation, l'inference et la selection de variables pour l'analyse de donnees longitudinales. Elle s'interesse d'abord au probleme de l'estimation robuste des parametres de regression et de nuisance, dont elle determine la loi asymptotique. Elle se sert d'equations d'estimation ponderees pour construire des fonctions de quasi-vraisemblance robustes. Elle utilise ensuite ces fonctions pour definir une classe de tests statistiques pour la selection de variables. Elle precise la loi limite de ces tests et en demontre la robustesse en terme de stabilite du seuil et de la puissance asymptotique. Une application concrete lui permet d'illustrer les avantages d'une analyse robuste.

[1]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[2]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[3]  E. Ronchetti,et al.  Robust Inference for Generalized Linear Models , 2001 .

[4]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[5]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[6]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[7]  S. J. Devlin,et al.  Robust Estimation of Dispersion Matrices and Principal Components , 1981 .

[8]  Alfio Marazzi,et al.  Algorithms, Routines, and s Functions for Robust Statistics: The Fortran Library Robeth With an Interface to S-Plus , 1993 .

[9]  B. R. Clarke Nonsmooth analysis and Fréchet differentiability of M-functionals , 1986 .

[10]  D J Dupuis,et al.  Marginally Specified Generalized Linear Mixed Models: A Robust Approach , 2002, Biometrics.

[11]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[12]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[13]  T. Caliński,et al.  Linear Statistical Inference , 1985 .

[14]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[15]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[16]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[17]  R. Huggins,et al.  A Robust Approach to the Analysis of Repeated Measures , 1993 .

[18]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[19]  A. Welsh,et al.  Robust Restricted Maximum Likelihood in Mixed Linear Models , 1995 .

[20]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[21]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[22]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[23]  J S Preisser,et al.  Robust Regression for Clustered Data with Application to Binary Responses , 1999, Biometrics.

[24]  Yun Tan,et al.  Algorithms, Routines, and S Functions, for Robust Statistics , 1995 .

[25]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[26]  E. Ronchetti,et al.  Robust Bounded-Influence Tests in General Parametric Models , 1994 .

[27]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[28]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[29]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[30]  P. Diggle Analysis of Longitudinal Data , 1995 .

[31]  Kung-Yee Liang,et al.  Approximate likelihood ratios for general estimating functions , 1995 .

[32]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.