Circlehunter: a tool to identify extrachromosomal circular DNA from ATAC-Seq data

[1]  Howard Y. Chang,et al.  Gene regulation on extrachromosomal DNA , 2022, Nature Structural & Molecular Biology.

[2]  F. Hirsch,et al.  Expression patterns and prognostic relevance of subtype‐specific transcription factors in surgically resected small‐cell lung cancer: an international multicenter study , 2022, The Journal of pathology.

[3]  Howard Y. Chang,et al.  Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. , 2021, Annual review of pathology.

[4]  Robert F. Gruener,et al.  oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data , 2021, Briefings Bioinform..

[5]  Sven Rahmann,et al.  Sustainable data analysis with Snakemake , 2021, F1000Research.

[6]  C. Rudin,et al.  Small-cell lung cancer , 2021, Nature Reviews Disease Primers.

[7]  P. Robson,et al.  Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. , 2021, Cancer cell.

[8]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[9]  Daniel L. Cameron,et al.  Unscrambling cancer genomes via integrated analysis of structural variation and copy number , 2020, bioRxiv.

[10]  D. Torrents,et al.  Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma , 2020, Nature Communications.

[11]  David A. Knowles,et al.  Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs , 2020, Cell.

[12]  M. Lupien,et al.  Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer , 2020, Science advances.

[13]  Zhenyu Liao,et al.  Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. , 2020, Biochimica et biophysica acta. Reviews on cancer.

[14]  Howard Y. Chang,et al.  Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers , 2020, Nature Genetics.

[15]  Angela N. Brooks,et al.  Visualizing and interpreting cancer genomics data via the Xena platform , 2020, Nature Biotechnology.

[16]  Y. Shibata,et al.  ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines , 2020, Science Advances.

[17]  P. Mischel,et al.  Extrachromosomal DNA - relieving heredity constraints, accelerating tumour evolution. , 2020, Annals of oncology : official journal of the European Society for Medical Oncology.

[18]  O. Witte,et al.  Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration , 2020, International journal of molecular sciences.

[19]  Feng Yan,et al.  From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis , 2020, Genome Biology.

[20]  K. Nackaerts,et al.  Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for Small-Cell Lung Cancer: Primary and Correlative Biomarker Analyses. , 2020, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[21]  Richard C. Sallari,et al.  Functional Enhancers Shape Extrachromosomal Oncogene Amplifications , 2019, Cell.

[22]  Howard Y. Chang,et al.  Circular ecDNA promotes accessible chromatin and high oncogene expression , 2019, Nature.

[23]  A. Kundaje,et al.  The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.

[24]  A. Berns,et al.  Tumor Heterogeneity Underlies Differential Cisplatin Sensitivity in Mouse Models of Small-Cell Lung Cancer , 2019, Cell reports.

[25]  C. Rudin,et al.  Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data , 2019, Nature Reviews Cancer.

[26]  D. Page,et al.  Chromosome Segregation Errors Generate a Diverse Spectrum of Simple and Complex Genomic Rearrangements , 2019, Nature Genetics.

[27]  V. Bafna,et al.  Exploring the landscape of focal amplifications in cancer using AmpliconArchitect , 2019, Nature Communications.

[28]  Anindya Dutta,et al.  Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells. , 2018, Trends in genetics : TIG.

[29]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[30]  Kristofer C. Berrett,et al.  MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. , 2017, Cancer cell.

[31]  Jessica M. Rusert,et al.  Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity , 2017, Nature.

[32]  A. Gazdar,et al.  Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer , 2016, Genes & development.

[33]  L. Zender,et al.  A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer , 2016, Nature Medicine.

[34]  Cheng-Zhong Zhang,et al.  Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. , 2015, Annual review of genetics.

[35]  Joshua A. Bittker,et al.  Correlating chemical sensitivity and basal gene expression reveals mechanism of action , 2015, Nature chemical biology.

[36]  Martin Vingron,et al.  Comprehensive genomic profiles of small cell lung cancer , 2015, Nature.

[37]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[38]  Ira M. Hall,et al.  SAMBLASTER: fast duplicate marking and structural variant read extraction , 2014, Bioinform..

[39]  S. Nelson,et al.  Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA , 2014, Science.

[40]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[41]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[42]  Leping Li,et al.  ART: a next-generation sequencing read simulator , 2012, Bioinform..

[43]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[44]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[45]  Domenico Trombetta,et al.  Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. , 2010, Genome research.

[46]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[47]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[48]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[49]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[50]  G. Wahl,et al.  Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[51]  F. Alt,et al.  Transposition and amplification of oncogene-related sequences in human neuroblastomas , 1983, Cell.

[52]  H. Lubs,et al.  THE CHROMOSOMAL COMPLEMENT OF HUMAN SOLID TUMORS. II. KARYOTYPES OF GLIAL TUMORS. , 1965, Journal of neurosurgery.

[53]  Leo A. Goodman,et al.  Some Practical Techniques in Serial Number Analysis , 1954 .

[54]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..