On choice of preconditioner for minimum residual methods for nonsymmetric matrices
暂无分享,去创建一个
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[3] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[4] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[5] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[6] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[7] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[8] W. Joubert,et al. Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .
[9] Olga Taussky,et al. The role of symmetric matrices in the study of general matrices , 1972 .
[10] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[11] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[12] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[13] Michele Benzi,et al. On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.
[14] Zdenek Strakos,et al. On Optimal Short Recurrences for Generating Orthogonal Krylov Subspace Bases , 2008, SIAM Rev..
[15] Azeddine Essai. Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.
[16] Beresford N. Parlett,et al. On nonsymmetric saddle point matrices that allow conjugate gradient iterations , 2008, Numerische Mathematik.
[17] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[18] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[19] M. Arioli,et al. Krylov sequences of maximal length and convergence of GMRES , 1997 .
[20] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[21] Zhongxiao Jia,et al. A power sparse approximate inverse preconditioning procedure for large sparse linear systems , 2009, Numer. Linear Algebra Appl..
[22] A. Ramage. A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .
[23] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[24] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[25] David L. Darmofal,et al. The Importance of Eigenvectors for Local Preconditioners of the Euler Equations , 1996 .
[26] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[27] Martin Stoll,et al. Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..
[28] Lothar Reichel,et al. A fast minimal residual algorithm for shifted unitary matrices , 1994, Numer. Linear Algebra Appl..
[29] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[30] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[31] Valeria Simoncini,et al. The effect of non-optimal bases on the convergence of Krylov subspace methods , 2005, Numerische Mathematik.
[32] P. Lancaster,et al. Indefinite Linear Algebra and Applications , 2005 .
[33] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[34] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[35] Zdenek Strakos,et al. GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..
[36] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[37] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[38] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[39] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[40] Yousef Saad,et al. High-order ILU preconditioners for CFD problems , 2000 .
[41] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[42] Ting-Zhu Huang,et al. On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors , 2009, Math. Comput. Simul..
[43] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[44] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[45] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[46] Michael Eiermann,et al. Fields of values and iterative methods , 1993 .
[47] Eugene E. Tyrtyshnikov,et al. Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..
[48] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[49] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[50] Paul E. Saylor,et al. The Role of the Inner Product in Stopping Criteria for Conjugate Gradient Iterations , 2001 .
[51] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[52] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[53] Jörg Liesen,et al. The Faber-Manteuffel Theorem for Linear Operators , 2008, SIAM J. Numer. Anal..
[54] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[55] Hassane Sadok,et al. A new look at CMRH and its relation to GMRES , 2012 .