Future Prospects of Superconducting RF for Accelerator Applications

Part I of this article provides a status update on the ongoing projects for both high-beta and low-beta applications. Some of these projects are already under production, others are perfecting prot...

[1]  A. Romanenko,et al.  Unprecedented quality factors at accelerating gradients up to 45 MVm−1 in niobium superconducting resonators via low temperature nitrogen infusion , 2017, 1701.06077.

[2]  A. Gurevich Superconducting Radio-Frequency Fundamentals for Particle Accelerators , 2012 .

[3]  A. Valente-Feliciano Superconducting RF materials other than bulk niobium: a review , 2016 .

[4]  A. Grassellino,et al.  Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field , 2013, 1304.4516.

[5]  RF SURFACE RESISTANCE MEASUREMENTS OF BINARY AND TERNARY NIOBIUM COMPOUNDS , 1995 .

[6]  S. Louie,et al.  The origin of the anomalous superconducting properties of MgB2 , 2002, Nature.

[7]  S. Belomestnykh Superconducting Radio-Frequency Systems for High-β Particle Accelerators , 2012 .

[8]  C. Benvenuti,et al.  Study of the residual surface resistance of niobium films at 1.5 GHz , 2001 .

[9]  H. Padamsee,et al.  Microscopic investigation of high gradient superconducting cavities after reduction of field emission , 1994 .

[10]  A. Ehiasarian,et al.  Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering , 2008 .

[11]  E. al.,et al.  Superconducting TESLA cavities , 2000, physics/0003011.

[12]  Miguel A. L. Marques,et al.  Superconducting properties of MgB2 from first principles , 2007 .

[13]  G. Brauer Nitrides, carbonitrides and oxynitrides of niobium , 1960 .

[14]  X. Singer,et al.  Development of large grain cavities , 2013 .

[15]  I. Brown Vacuum Arc Ion Sources , 1994 .

[16]  M. Kelly Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators , 2012 .

[17]  Elizabeth C. Dickey,et al.  MgB2 thin films by hybrid physical–chemical vapor deposition , 2007 .

[18]  A. Gurevich,et al.  Enhancement of RF breakdown field of superconductors by multilayer coating , 2006 .

[19]  S. Stark,et al.  Production, installation and test of Nb-sputtered QWRs for ALPI , 2002 .

[20]  C. James,et al.  Energetic condensation growth of Nb thin films , 2012 .

[21]  A. Wu,et al.  Studies of niobium thin film produced by energetic vacuum deposition , 2005 .

[22]  J. Andersson,et al.  Self-sputtering far above the runaway threshold: an extraordinary metal-ion generator. , 2009, Physical review letters.

[23]  S. Posen,et al.  Nb3Sn superconducting radiofrequency cavities: fabrication, results, properties, and prospects , 2017 .

[24]  D. Proch,et al.  Quality requirements and control of high purity niobium for superconducting RF cavities , 2003 .

[25]  A Review of the Properties of Nb3Sn and Their Variation with A15 Composition, Morphology and Strain State , 2006, cond-mat/0606303.

[26]  A. Valente-Feliciano,et al.  Large crystal grain niobium thin films deposited by energetic condensation in vacuum arc , 2009 .

[27]  J. Villégier,et al.  Characterization of Field Penetration in Superconducting Multilayers Samples , 2011, IEEE Transactions on Applied Superconductivity.

[28]  J. Villégier,et al.  Study of nanometric superconducting multilayers for RF field screening applications , 2013 .

[29]  A. Valente-Feliciano,et al.  Very high residual resistivity ratios of heteroepitaxial superconducting niobium films on MgO substrates , 2011 .

[30]  A. Romanenko,et al.  The effect of vacancies on the microwave surface resistance of niobium revealed by positron annihilation spectroscopy , 2013 .

[32]  S. Calatroni 20 Years of experience with the Nb/Cu technology for superconducting cavities and perspectives for future developments , 2006 .

[33]  J. Villégier,et al.  Characterization of superconducting nanometric multilayer samples for superconducting rf applications: First evidence of magnetic screening effect , 2010 .