Sparse to Dense 3D Reconstruction from Rolling Shutter Images

It is well known that the rolling shutter effect in images captured with a moving rolling shutter camera causes inaccuracies to 3D reconstructions. The problem is further aggravated with weak visual connectivity from wide baseline images captured with a fast moving camera. In this paper, we propose and implement a pipeline for sparse to dense 3D construction with wide baseline images captured from a fast moving rolling shutter camera. Specifically, we propose a cost function for Bundle Adjustment (BA) that models the rolling shutter effect, incorporates GPS/INS readings, and enforces pairwise smoothness between neighboring poses. We optimize over the 3D structures, camera poses and velocities. We also introduce a novel interpolation scheme for the rolling shutter plane sweep stereo algorithm that allows us to achieve a 7× speed up in the depth map computations for dense reconstruction without losing accuracy. We evaluate our proposed pipeline over a 2.6km image sequence captured with a rolling shutter camera mounted on a moving car.

[1]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Per-Erik Forssén,et al.  Efficient Video Rectification and Stabilisation for Cell-Phones , 2012, International Journal of Computer Vision.

[4]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[5]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, International Journal of Computer Vision.

[6]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Homer H. Chen,et al.  Analysis and Compensation of Rolling Shutter Effect , 2008, IEEE Transactions on Image Processing.

[8]  Andrew I. Comport,et al.  A Unified Rolling Shutter and Motion Blur Model for 3D Visual Registration , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Zuzana Kukelova,et al.  R6P - Rolling Shutter Absolute Camera Pose , 2015, CVPR 2015.

[11]  Jan-Michael Frahm,et al.  Building Rome on a Cloudless Day , 2010, ECCV.

[12]  Per-Erik Forssén,et al.  Stabilizing cell phone video using inertial measurement sensors , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[13]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[14]  David Jacobs,et al.  CTSR 2011-03 Digital Video Stabilization and Rolling Shutter Correction using Gyroscopes , 2011 .

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  S. Shankar Sastry,et al.  Geometric Models of Rolling-Shutter Cameras , 2005, ArXiv.

[17]  Michael Felsberg,et al.  Rolling shutter bundle adjustment , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Marc Pollefeys,et al.  A minimal solution to the rolling shutter pose estimation problem , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Maxime Lhuillier Fusion of GPS and structure-from-motion using constrained bundle adjustments , 2011, CVPR 2011.

[20]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[21]  David Martin,et al.  Street View Motion-from-Structure-from-Motion , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Michael Gleicher,et al.  Subspace video stabilization , 2011, TOGS.

[23]  Ludovic Magerand,et al.  Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching , 2012, ECCV.

[24]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[25]  Per-Erik Forssén,et al.  Rectifying rolling shutter video from hand-held devices , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[27]  Marc Pollefeys,et al.  Rolling Shutter Stereo , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  François Berry,et al.  Structure and kinematics triangulation with a rolling shutter stereo rig , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  Roland Siegwart,et al.  Rolling Shutter Camera Calibration , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.