Molecular Alumo- and Gallosilicate Hydrides Functionalized with Terminal M(NR2)3 and Bridging M(NR2)2 (M = Ti, Zr, Hf; R = Me, Et) Moieties.

A general synthetic strategy for the systematic synthesis of group 4 MIV heterometallic complexes LMIII(H)(μ-O)Si(μ-O)(OtBu)2}nMIV(NR2)4-n (L = {[HC{C(Me)N(2,6-iPr2C6H3)}2; MIII = Al or Ga; n = 1 or 2; MIV = Ti, Zr, Hf; R = Me, Et), based on alumo- or gallosilicate hydride ligands bearing a Si-OH moiety, is presented. The challenging isolation of these metalloligands involved two strategies. On the one hand, the acid-base reaction of LAlH2 with (HO)2Si(OtBu)2 yielded LAlH(μ-O)Si(OH)(OtBu)2 (1), while on the other hand, the oxidative addition of (HO)2Si(OtBu)2 to LGa produced the gallium analog (2). These metalloligands successfully stabilized two hydrogen atoms with different acid-base properties (MIII-H and SiO-H) in the same molecule. Reactivity studies between 1 and 2 and group 4 amides MIV(NR2)4 (MIV = Ti, Zr, Hf; R = Me, Et) and tuning the reactions conditions and stoichiometry led to isolation and structural characterization of heterometallic complexes 3-11 with a 1:1 or 2:1 metalloligand/MIV ratio. Notably, some of these molecular heterometallic silicate complexes stabilize for the first time terminal (O3Si-O-)MIV(NR2)3 moieties known from single-site silica-grafted species. Furthermore, the aluminum-containing heterometallic complexes possess Al-H vibrational energies similar to those reported for modified alumina surfaces, which makes them potentially suitable models for the proposed MIV species grafted onto silica/alumina surfaces with hydride and dihydride architectures.

[1]  T. Marks,et al.  Rapid atom-efficient polyolefin plastics hydrogenolysis mediated by a well-defined single-site electrophilic/cationic organo-zirconium catalyst , 2022, Nature Communications.

[2]  I. Nifant’ev,et al.  Transition Metal–(μ-Cl)–Aluminum Bonding in α-Olefin and Diene Chemistry , 2022, Molecules.

[3]  E. Jeanneau,et al.  Rational Preparation of Well-Defined Multinuclear Iridium-Aluminum Polyhydride Clusters and Comparative Reactivity. , 2022, Inorganic chemistry.

[4]  S. Harder,et al.  Heterometallic Mg−Ba Hydride Clusters in Hydrogenation Catalysis , 2021 .

[5]  L. Belpassi,et al.  Reactivity of a Gold-Aluminyl Complex with Carbon Dioxide: A Nucleophilic Gold? , 2021, Journal of the American Chemical Society.

[6]  S. Aldridge,et al.  Molecular Main Group Metal Hydrides. , 2021, Chemical reviews.

[7]  E. Jeanneau,et al.  Strongly Polarized Iridiumδ--Aluminumδ+ Pairs: Unconventional Reactivity Patterns Including CO2 Cooperative Reductive Cleavage. , 2021, Journal of the American Chemical Society.

[8]  C. Weidenthaler Crystal structure evolution of complex metal aluminum hydrides upon hydrogen release , 2020 .

[9]  B. Engels,et al.  Lewis-Base Stabilization of the Parent Al(I) Hydride under Ambient Conditions. , 2019, Journal of the American Chemical Society.

[10]  M. Yamashita,et al.  Synthesis of A Pincer-Ir(V) Complex with A Base-Free Alumanyl Ligand and Its Application toward Dehydrogenation of Alkanes. , 2019, Angewandte Chemie.

[11]  A. Appel,et al.  Thermodynamic Hydricity of Transition Metal Hydrides. , 2016, Chemical reviews.

[12]  C. Copéret,et al.  Isolated Surface Hydrides: Formation, Structure, and Reactivity. , 2016, Chemical reviews.

[13]  Thomas S. Teets,et al.  Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. , 2016, Chemical reviews.

[14]  Connie C. Lu,et al.  Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. , 2015, Journal of the American Chemical Society.

[15]  E. Abou‐hamad,et al.  Well-defined single-site monohydride silica-supported zirconium from azazirconacyclopropane. , 2015, Chemistry.

[16]  J. Peters,et al.  Boryl-metal bonds facilitate cobalt/nickel-catalyzed olefin hydrogenation. , 2014, Journal of the American Chemical Society.

[17]  Christoph Schädle,et al.  Rare-Earth-Metal-Promoted Hydroalumination , 2013 .

[18]  D. Solís-Ibarra,et al.  Heterometallic alumo- and gallodisilicates with M(O-Si-O)2M' and [M(O-Si-O)2]2M' cores (M = Al, Ga; M' = Ti, Zr, Hf). , 2013, Inorganic chemistry.

[19]  E. Abou‐hamad,et al.  Well-defined azazirconacyclopropane complexes supported on silica structurally determined by 2D NMR comparative elucidation. , 2013, Chemical communications.

[20]  B. L. Choudhary,et al.  Molecular precursors for the preparation of homogenous zirconia-silica materials by hydrolytic sol-gel process in organic media. Crystal structures of [Zr{OSi(O(t)Bu)3}4(H2O)2]·2H2O and [Ti(O(t)Bu){OSi(O(t)Bu)3}3]. , 2012, Dalton transactions.

[21]  D. Solís-Ibarra,et al.  Molecular gallosilicates and their group 4 multimetallic derivatives. , 2011, Inorganic chemistry.

[22]  J. Bercaw,et al.  Cationic alkylaluminum-complexed zirconocene hydrides as participants in olefin polymerization catalysis. , 2010, Journal of the American Chemical Society.

[23]  A. P. Gómora-Figueroa,et al.  β-Diketiminate Gallium Amides: Useful Synthons in Gallium Chemistry , 2009 .

[24]  S. Norsic,et al.  Surface Organometallic Chemistry of Titanium on Silica−Alumina and Catalytic Hydrogenolysis of Waxes at Low Temperature , 2009 .

[25]  N. Mitzel,et al.  Transformation of hydroxylamide into hydrazide units in the coordination spheres of group 4 metals. , 2009, Dalton transactions.

[26]  R. Toscano,et al.  Solubilizing functionalized molecular aluminosilicates. , 2009, Dalton transactions.

[27]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[28]  C. Santini,et al.  Synthesis, characterization, and activity in ethylene polymerization of silica supported cationic cyclopentadienyl zirconium complexes. , 2006, Journal of the American Chemical Society.

[29]  G. Frenking,et al.  C-H activated isomers of [M(AlCp*)5] (M=Fe, Ru). , 2005, Angewandte Chemie.

[30]  G. Frenking,et al.  The reaction of the group-13 alkyls ER3 (E = Al, Ga, In; R = CH2t-Bu, CH2 SiMe3) with the platinum-complex [(dcpe)Pt(H)(CH2t-Bu)] , 2004 .

[31]  T. Tilley,et al.  Tris(tert-butoxy)siloxy Complexes as Single-Source Precursors to Homogeneous Zirconia- and Hafnia-Silica Materials. An Alternative to the Sol-Gel Method , 1997 .

[32]  W. Grigsby,et al.  Synthesis and Characterization of Sterically Encumbered Derivatives of Aluminum Hydrides and Halides: Assessment of Steric Properties of Bulky Terphenyl Ligands. , 1996, Inorganic chemistry.

[33]  V. K. Dudchenko,et al.  Formation of zirconium hydrides in supported organozirconium catalysts and their role in ethylene polymerization , 1977 .

[34]  Zhengkun Yu,et al.  Synthesis, Characterization, and Hydrolysis Products of (η2‐tBu2pz)AlH(μ:η1,η1‐tBu2pz)2AlH2 − Structural Characterization of a Complex Containing η1‐, η2‐, and μ:η1,η1‐Pyrazolato Ligands and a Complex Containing a Terminal Hydroxo Ligand , 2005 .

[35]  E. Tiekink,et al.  tert‐Butoxysilanols as model compounds for labile key intermediates of the sol–gel process: crystal and molecular structures of (t‐BuO)3SiOH and HO[(t‐BuO)2SiO]2H , 2003 .

[36]  B. Eichler,et al.  Synthesis and characterization of the monomer Ga{(NDippCMe)2CH} (Dipp = C6H3Pri2-2,6): a low valent gallium(I) carbene analogue , 2000 .

[37]  I. P. Rothwell,et al.  Surface-supported group 5 metal organometallic compounds for catalytic arene hydrogenation , 1993 .