Cosserat and Cauchy materials as continuum models of brick masonry

Continuum modeling for masonry-like material accounting for bricks or blocks texture is discussed. The constitutive functions for the contact actions—expressed in terms of size, shape and arrangement of the block assembly-are derived within the framework of the linear elastic Cosserat and Cauchy theories. By varying some important geometrical parameters: the scale factor between the wall and the blocks size, the shape of the bricks and their arrangement, micropolar materials with particular internal constraints are obtained. In a few situations the constrained continuum behaves as a Cauchy continuum. In general, the Cauchy continuum does not provide a proper description of the brick masonry behaviour while the structured continuum model, accounting for the mutual blocks rotation, gives satisfactory results.SommarioSi studia la modellazione continua della muratura a blocchi, considerata come sistema discreto di corpi indeformabili, discutendo le proprietà di due continui equivalenti: un modello di Cosserat e uno di Cauchy. Nell' ambito della elasticità lineare, si forniscono le espressioni delle relazioni costitutive per le azioni di contatto, in funzione delle dimensioni, della forma e della disposizione dei mattoni. Modificando questi parametri geometrici si ottengono materiali equivalenti dotati di particolari vincoli interni. In alcuni rari casi il continuo di Cosserat vincolato si comporta come un continuo di Cauchy. Salvo queste eccezioni, il continuo classico è un modello inadeguato per la muratura a blocchi mentre un continuo dotato di struttura fornisce sempre risultati soddisfacenti.

[1]  A. Page Finite Element Model for Masonry , 1978 .

[2]  I. Monetto,et al.  Microstructural model for dry block masonry walls with in-plane loading , 1994 .

[3]  E. Sternberg,et al.  The effect of couple-stresses on the stress concentration around a crack☆ , 1967 .

[4]  D. Bogy,et al.  The effect of couple-stresses on the corner singularity due to an asymmetric shear loading , 1968 .

[5]  P. Podio-Guidugli,et al.  The representation problem of constrained linear elasticity , 1992 .

[6]  T. Boothby Stability of Masonry Piers and Arches Including Sliding , 1994 .

[7]  M. Sokołowski Theory of couple-stresses in bodies with constrained rotations , 1970 .

[8]  S. Pietruszczak,et al.  A mathematical description of macroscopic behaviour of brick masonry , 1992 .

[9]  X. Su Strain localization in plane strain micropolar elasticity , 1994, Archive of Applied Mechanics.

[10]  Hans Muhlhaus,et al.  Application of Cosserat theory in numerical solutions of limit load problems , 1989 .

[11]  P. Trovalusci,et al.  Masonry as structured continuum , 1995 .

[12]  Gilbert A. Hegemier,et al.  Finite Element Method for Interface Problems , 1982 .

[13]  Ching S. Chang,et al.  Constitutive relation for a particulate medium with the effect of particle rotation , 1990 .

[14]  A. Anthoine Derivation of the in-plane elastic characteristics of masonry through homogenization theory , 1995 .

[15]  R. Livesley A computational model for the limit analysis of three-dimensional masonry structures , 1992 .

[16]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[17]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .