Evolutionary Motion Model Transitions for Tracking Unmanned Air Vehicles

[1]  Erkan Bostanci,et al.  Evolutionary Fuzzy Adaptive Motion Models for User Tracking in Augmented Reality Applications , 2018, 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).

[2]  Mehmet Serdar Guzel,et al.  Geo-location Based Augmented Reality Application For Cultural Heritage Using Drones , 2018, 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).

[3]  Agoston Restas,et al.  Drone Applications for Supporting Disaster Management , 2015 .

[4]  Judy E. Scott,et al.  Drone Delivery Models for Healthcare , 2017, HICSS.

[5]  Dah-Jing Jwo,et al.  Fuzzy Adaptive Interacting Multiple Model Nonlinear Filter for Integrated Navigation Sensor Fusion , 2011, Sensors.

[6]  Erkan Bostanci,et al.  Sensor fusion of camera, GPS and IMU using fuzzy adaptive multiple motion models , 2015, Soft Comput..

[7]  Abraham Kandel,et al.  On accurate localization and uncertain sensors , 2012, Int. J. Intell. Syst..

[8]  Stephen DiVerdi,et al.  Heads Up and Camera Down: A Vision-Based Tracking Modality for Mobile Mixed Reality , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Erkan Bostanci,et al.  User Tracking Methods for Augmented Reality , 2013 .

[10]  Jing Li,et al.  Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles. , 2016, The Review of scientific instruments.

[11]  Jinling Wang,et al.  Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration , 2010 .

[12]  Peter Corke,et al.  An Introduction to Inertial and Visual Sensing , 2007, Int. J. Robotics Res..