Theory of Nonequilibrium Free Energy Transduction by Molecular Machines.

Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.

[1]  R. Clower,et al.  The Theory of Capital , 1961 .

[2]  Changbong Hyeon,et al.  Quantifying the Heat Dissipation from a Molecular Motor's Transport Properties in Nonequilibrium Steady States. , 2016, The journal of physical chemistry letters.

[3]  H. Qian Motor protein with nonequilibrium potential: Its thermodynamics and efficiency. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  T. Brandes,et al.  Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping , 2016, 1602.01340.

[5]  Aidan I Brown,et al.  Allocating dissipation across a molecular machine cycle to maximize flux , 2017, Proceedings of the National Academy of Sciences.

[6]  Z. C. Tu,et al.  Efficiency at maximum power of Feynman's ratchet as a heat engine , 2008, 0805.1482.

[7]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[8]  Udo Seifert,et al.  Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. , 2008, The Journal of chemical physics.

[9]  D. Bedeaux,et al.  Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  C. J. Adkins An introduction to thermal physics , 1987 .

[11]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[12]  J. Ross,et al.  Direct Single Molecule Imaging of Enhanced Enzyme Diffusion. , 2018, Physical review letters.

[13]  M. Esposito,et al.  Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining. , 2017, Physical review. E.

[14]  Jeremy L. England Dissipative adaptation in driven self-assembly. , 2015, Nature nanotechnology.

[15]  J. M. R. Parrondo,et al.  Time series irreversibility: a visibility graph approach , 2012 .

[16]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[17]  N. R. Forde,et al.  Dimensionality-dependent crossover in motility of polyvalent burnt-bridges ratchets , 2018, Physical Review E.

[18]  Changbong Hyeon,et al.  Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials. , 2017, Physical review. E.

[19]  Steven M. Block,et al.  A universal pathway for kinesin stepping , 2011, Nature Structural &Molecular Biology.

[20]  D. Manstein,et al.  Molecular mechanism of actomyosin-based motility , 2005, Cellular and Molecular Life Sciences CMLS.

[21]  Todd R. Gingrich,et al.  Dissipation Bounds All Steady-State Current Fluctuations. , 2015, Physical review letters.

[22]  David A. Sivak,et al.  Stochastic control in microscopic nonequilibrium systems , 2018 .

[23]  Michael Börsch,et al.  Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase , 2004, Nature Structural &Molecular Biology.

[24]  Tim Schmiedl,et al.  Optimal processes in stochastic thermodynamics , 2009 .

[25]  Katharina Brinkert Energy Conversion in Natural and Artificial Photosynthesis , 2018 .

[26]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[27]  Helmut Grubmüller,et al.  Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Kazuhiko Kinosita,et al.  ATP-driven stepwise rotation of FoF1-ATP synthase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[31]  H. Rigneault,et al.  A critique of methods for temperature imaging in single cells , 2014, Nature Methods.

[32]  Matthew E. Quenneville,et al.  Energy Dissipation and Information Flow in Coupled Markovian Systems , 2018, Entropy.

[33]  C Jarzynski,et al.  Experimental test of Hatano and Sasa's nonequilibrium steady-state equality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Thomas E. Ouldridge,et al.  What we learn from the learning rate , 2017, 1702.06041.

[35]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[36]  Fluctuation Relations for Molecular Motors , 2009, 0912.0391.

[37]  F. Jülicher,et al.  Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Udo Seifert,et al.  Efficiencies of a molecular motor: a generic hybrid model applied to the F1-ATPase , 2012, 1209.3667.

[39]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[40]  David A. Sivak,et al.  Thermodynamic geometry of minimum-dissipation driven barrier crossing. , 2016, Physical review. E.

[41]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[42]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[43]  Christopher Jarzynski,et al.  Analysis of slow transitions between nonequilibrium steady states , 2015, 1507.06269.

[44]  Kambiz M. Hamadani,et al.  The heat released during catalytic turnover enhances the diffusion of an enzyme , 2014, Nature.

[45]  H. Qian Cycle kinetics, steady state thermodynamics and motors—a paradigm for living matter physics , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  A B Kolomeisky,et al.  The force exerted by a molecular motor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Amos Molecular motors: not quite like clockwork , 2008, Cellular and Molecular Life Sciences.

[48]  C. Jarzynski,et al.  Mimicking Nonequilibrium Steady States with Time-Periodic Driving , 2015, 1509.06323.

[49]  David A. Sivak,et al.  Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes , 2019, Proceedings of the National Academy of Sciences.

[50]  M. Girvin,et al.  Structural changes linked to proton translocation by subunit c of the ATP synthase , 1999, Nature.

[51]  V. I. Mel'Nikov,et al.  The Kramers problem : fifty years of development , 1991 .

[52]  M. Esposito,et al.  Tightening the uncertainty principle for stochastic currents. , 2016, Physical review. E.

[53]  John D Chodera,et al.  The molten globule state is unusually deformable under mechanical force , 2012, Proceedings of the National Academy of Sciences.

[54]  Andre C. Barato,et al.  Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation , 2014 .

[55]  Anatoly B Kolomeisky,et al.  Motor proteins and molecular motors: how to operate machines at the nanoscale , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  R. Astumian,et al.  Stochastically pumped adaptation and directional motion of molecular machines , 2018, Proceedings of the National Academy of Sciences.

[57]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[58]  Modified fluctuation-dissipation theorem for non-equilibrium steady states and applications to molecular motors , 2010, 1009.4123.

[59]  Nico Stuurman,et al.  Single-molecule observations of neck linker conformational changes in the kinesin motor protein , 2006, Nature Structural &Molecular Biology.

[60]  David A. Sivak,et al.  Optimal discrete control: minimizing dissipation in discretely driven nonequilibrium systems , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[61]  R. Astumian,et al.  Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. , 2015, Biophysical journal.

[62]  Douglas E. Smith,et al.  Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging , 2014, Proceedings of the National Academy of Sciences.

[63]  David A. Sivak,et al.  Optimal control of rotary motors. , 2018, Physical review. E.

[64]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[65]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  M. N. Bera,et al.  Thermodynamics from Information , 2018, 1805.10282.

[67]  David A. Sivak,et al.  Breaking time-reversal symmetry for ratchet models of molecular machines. , 2018, Physical review. E.

[68]  Udo Seifert,et al.  Efficiency of molecular motors at maximum power , 2008, 0801.3743.

[69]  K. Mallick,et al.  Nonequilibrium fluctuations and mechanochemical couplings of a molecular motor. , 2007, Physical review letters.

[70]  C. Bustamante,et al.  A Viral Packaging Motor Varies Its DNA Rotation and Step Size to Preserve Subunit Coordination as the Capsid Fills , 2014, Cell.

[71]  C Jarzynski,et al.  Feynman's ratchet and pawl: an exactly solvable model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  K. Challis Tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor. , 2018, Physical review. E.

[73]  Ken A Dill,et al.  Mechanisms for achieving high speed and efficiency in biomolecular machines , 2019, Proceedings of the National Academy of Sciences.

[74]  Suriyanarayanan Vaikuntanathan,et al.  Design principles for nonequilibrium self-assembly , 2015, Proceedings of the National Academy of Sciences.

[75]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[76]  Udo Seifert,et al.  Thermodynamic uncertainty relation for biomolecular processes. , 2015, Physical review letters.

[77]  D. Thirumalai,et al.  Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin , 2017, Proceedings of the National Academy of Sciences.

[78]  M. Müller,et al.  Inter‐subunit rotation and elastic power transmission in F0F1‐ATPase , 2001, FEBS letters.

[79]  Holger Flechsig,et al.  Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F1-ATPase Ring , 2017, Biophysical journal.

[80]  J. Howard,et al.  Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes* , 1999, The Journal of Biological Chemistry.

[81]  Grant M. Rotskoff,et al.  Geometric approach to optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems. , 2016, Physical review. E.

[82]  K. Svoboda,et al.  Fluctuation analysis of motor protein movement and single enzyme kinetics. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Todd R. Gingrich,et al.  Proof of the finite-time thermodynamic uncertainty relation for steady-state currents. , 2017, Physical review. E.

[84]  H. Hess Molecular Motor or Molecular Clock: A Question of Load , 2017, IEEE Transactions on NanoBioscience.

[85]  A. Warshel,et al.  Torque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase , 2015, Quarterly Reviews of Biophysics.

[86]  Paolo Muratore-Ginanneschi,et al.  Optimal protocols and optimal transport in stochastic thermodynamics. , 2010, Physical review letters.

[87]  X Chris Le,et al.  A microRNA-initiated DNAzyme motor operating in living cells , 2017, Nature Communications.

[88]  D. Chowdhury Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective , 2012, 1207.6070.

[89]  Tania A Baker,et al.  Polymerases and the Replisome: Machines within Machines , 1998, Cell.

[90]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[91]  J. Gelles,et al.  Coupling of kinesin steps to ATP hydrolysis , 1997, Nature.

[92]  Eva Zimmermann Dynamics and thermodynamics of molecular motor-cargo systems , 2015 .

[93]  Jordan M. Horowitz,et al.  Phase Transition in Protocols Minimizing Work Fluctuations. , 2017, Physical review letters.

[94]  J. Howard Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion , 2011 .

[95]  B. Machta,et al.  Energy Dissipation Bounds in Autonomous Thermodynamic Systems , 2019, 1903.06780.

[96]  J. F. Stoddart,et al.  Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.

[97]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[98]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[99]  H. Noji,et al.  A rotary molecular motor that can work at near 100% efficiency. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[100]  M. Feiss,et al.  The bacteriophage DNA packaging motor. , 2008, Annual review of genetics.

[101]  M. Lynch Evolution of the mutation rate. , 2010, Trends in genetics : TIG.

[102]  D. Wigley,et al.  Structure and mechanism of helicases and nucleic acid translocases. , 2007, Annual review of biochemistry.

[103]  Sydney Brenner,et al.  Encyclopedia of genetics , 2002 .

[104]  David A. Sivak,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[105]  Patrick R. Zulkowski,et al.  Optimal control of overdamped systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  P. Curmi,et al.  Design and Construction of the Lawnmower, An Artificial Burnt-Bridges Motor , 2015, IEEE Transactions on NanoBioscience.

[107]  M. Esposito,et al.  Universal theory of efficiency fluctuations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  A. Imparato,et al.  Efficiency at maximum power of interacting molecular machines. , 2012, Physical review letters.

[109]  Steven M Block,et al.  Examining kinesin processivity within a general gating framework , 2015, eLife.

[110]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[111]  Stanislas Leibler,et al.  Speed, dissipation, and error in kinetic proofreading , 2012, Proceedings of the National Academy of Sciences.

[112]  T. L. Hill,et al.  Free Energy Transduction in Biology: The Steady-State Kinetic and Thermodynamic Formalism , 1977 .

[113]  Takahiro Harada,et al.  Equality connecting energy dissipation with a violation of the fluctuation-response relation. , 2005, Physical review letters.

[114]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[115]  Massimiliano Esposito,et al.  Conservation laws shape dissipation , 2017, 1709.01951.

[116]  H. Hasegawa,et al.  Generalization of the Second Law for a Nonequilibrium Initial State , 2009, 0907.1569.

[117]  Energy dissipation asymmetry in the non equilibrium folding/unfolding of the single molecule alanine decapeptide , 2010 .

[118]  Justin E. Molloy,et al.  Neck Length and Processivity of Myosin V* , 2003, Journal of Biological Chemistry.

[119]  Hendrik Sielaff,et al.  Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk , 2011, Proceedings of the National Academy of Sciences.

[120]  A. Imparato,et al.  Maximum power operation of interacting molecular motors. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  John D. Chodera,et al.  Using Nonequilibrium Fluctuation Theorems to Understand and Correct Errors in Equilibrium and Nonequ , 2011, 1107.2967.

[122]  K. Håkansson,et al.  Structure and mechanism of Na,K-ATPase: functional sites and their interactions. , 2003, Annual review of physiology.

[123]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Sebastian Deffner,et al.  Minimal dissipation in processes far from equilibrium , 2018, Physical Review E.

[125]  Sebastian Deffner,et al.  Optimal driving of isothermal processes close to equilibrium. , 2014, The Journal of chemical physics.

[126]  David A. Sivak,et al.  Pulling cargo increases the precision of molecular motor progress , 2018, EPL (Europhysics Letters).

[127]  Ken A Dill,et al.  Molecular Motors: Power Strokes Outperform Brownian Ratchets. , 2016, The journal of physical chemistry. B.

[128]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[129]  Hendrik Sielaff,et al.  Torque generation and elastic power transmission in the rotary FOF1-ATPase , 2009, Nature.

[130]  William O. Hancock,et al.  Bidirectional cargo transport: moving beyond tug of war , 2014, Nature Reviews Molecular Cell Biology.

[131]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[132]  C. Broeck,et al.  Work statistics in stochastically driven systems , 2014, 1402.5777.

[133]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[134]  Martin Karplus,et al.  How subunit coupling produces the γ-subunit rotary motion in F1-ATPase , 2008, Proceedings of the National Academy of Sciences.

[135]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[136]  Henry Hess,et al.  Engineering applications of biomolecular motors. , 2011, Annual review of biomedical engineering.

[137]  Daichi OkunoRyota IinoHiroyuki Noji Stiffness of c subunit of F 1 -ATPase , 2010 .

[138]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[139]  T. Tlusty,et al.  Enzyme leaps fuel antichemotaxis , 2017, Proceedings of the National Academy of Sciences.

[140]  Juan M R Parrondo,et al.  Entropy production and Kullback-Leibler divergence between stationary trajectories of discrete systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  N. Kampen,et al.  Elimination of fast variables , 1985 .

[142]  Howard C. Berg,et al.  On Torque and Tumbling in Swimming Escherichia coli , 2006, Journal of bacteriology.

[143]  George Oster,et al.  The Stokes efficiency for molecular motors and its applications , 2002 .

[144]  Carlos Bustamante,et al.  Exact solutions for kinetic models of macromolecular dynamics. , 2008, The journal of physical chemistry. B.

[145]  David A. Sivak,et al.  Near-equilibrium measurements of nonequilibrium free energy. , 2009, Physical review letters.

[146]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[147]  Heinrich Meyr,et al.  Decision Making in the Arrow of Time. , 2015, Physical review letters.

[148]  Andre C. Barato,et al.  Efficiency of cellular information processing , 2014, 1405.7241.

[149]  Steffen Kutter,et al.  Evolutionary drivers of thermoadaptation in enzyme catalysis , 2017, Science.

[150]  Aidan I Brown,et al.  Allocating and Splitting Free Energy to Maximize Molecular Machine Flux. , 2017, The journal of physical chemistry. B.

[151]  Hong Qian,et al.  The mathematical theory of molecular motor movement and chemomechanical energy transduction , 2000, cond-mat/0106302.

[152]  G. Hummer,et al.  Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase , 2015, Proceedings of the National Academy of Sciences.

[153]  Joshua W. Shaevitz,et al.  Probing the kinesin reaction cycle with a 2D optical force clamp , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[154]  P. Hoffmann,et al.  How molecular motors extract order from chaos (a key issues review) , 2016, Reports on progress in physics. Physical Society.

[155]  G. Oster,et al.  Reverse engineering a protein: the mechanochemistry of ATP synthase. , 2000, Biochimica et biophysica acta.

[156]  U. Seifert,et al.  Optimal finite-time processes in stochastic thermodynamics. , 2007, Physical review letters.

[157]  Thomas Speck,et al.  Fluctuation-dissipation theorem in nonequilibrium steady states , 2009, 0907.5478.

[158]  R. Astumian Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.

[159]  David A. Sivak,et al.  Optimal control of protein copy number. , 2018, Physical review. E.

[160]  Martin Hessling,et al.  The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis , 2009, Nature Structural &Molecular Biology.

[161]  Efficiency of autonomous soft nanomachines at maximum power. , 2010, Physical review letters.

[162]  L. Gierasch,et al.  Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs) , 2014, Chemical reviews.

[163]  N. Oppenheimer,et al.  Structure and mechanism , 1989 .

[164]  H. Grubmüller,et al.  Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase. , 2017, Journal of the American Chemical Society.

[165]  Zhisong Wang,et al.  Track-walking molecular motors: a new generation beyond bridge-burning designs. , 2019, Nanoscale.

[166]  Hiroyuki Fujita,et al.  Highly coupled ATP synthesis by F1-ATPase single molecules , 2005, Nature.

[167]  E. Katayama,et al.  Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity , 2003, The EMBO journal.

[168]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[169]  Christopher Jarzynski,et al.  Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems , 2017 .

[170]  A. Dunn,et al.  Dual-Beam Optical Tweezers , 2012 .

[171]  A. C. Barato,et al.  Universal bound on the efficiency of molecular motors , 2016, 1609.08046.

[172]  Keith Bonin,et al.  Forces required of kinesin during processive transport through cytoplasm. , 2002, Biophysical journal.

[173]  Hong Qian,et al.  Vector Field Formalism and Analysis for a Class of Thermal Ratchets , 1998 .

[174]  Juan J de Pablo,et al.  Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase. , 2009, Journal of the American Chemical Society.

[175]  Udo Seifert,et al.  Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[176]  M. Way,et al.  Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3 , 2018, Structure.

[177]  Anatoly B Kolomeisky,et al.  Elucidating interplay of speed and accuracy in biological error correction , 2017, Proceedings of the National Academy of Sciences.

[178]  N. Hirokawa,et al.  Kinesin superfamily motor proteins and intracellular transport , 2009, Nature Reviews Molecular Cell Biology.

[179]  R. Astumian Optical vs. chemical driving for molecular machines. , 2016, Faraday discussions.

[180]  R. Cross,et al.  Mechanics of the kinesin step , 2005, Nature.

[181]  Eric Vanden-Eijnden,et al.  Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. , 2011, The Journal of chemical physics.

[182]  G. Crooks,et al.  Length of time's arrow. , 2008, Physical review letters.

[183]  Matthias Rief,et al.  Myosin-V is a mechanical ratchet. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[184]  I. Goychuk Molecular machines operating on the nanoscale: from classical to quantum , 2015, Beilstein journal of nanotechnology.

[185]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[186]  F. Ritort,et al.  Finite-time generalization of the thermodynamic uncertainty relation. , 2017, Physical review. E.

[187]  C. Broeck,et al.  Discrete-time thermodynamic uncertainty relation , 2017, 1708.07032.

[188]  R. Astumian Microscopic reversibility as the organizing principle of molecular machines. , 2012, Nature nanotechnology.

[189]  General technique of calculating the drift velocity and diffusion coefficient in arbitrary periodic systems , 1999, cond-mat/9909204.

[190]  A. Warshel,et al.  Simulating the dynamics of the mechanochemical cycle of myosin-V , 2017, Proceedings of the National Academy of Sciences.

[191]  Reinhard Lipowsky,et al.  'Life is motion': multiscale motility of molecular motors , 2005 .

[192]  N. Derr,et al.  Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. , 2017, Current opinion in biotechnology.

[193]  Makoto Taiji,et al.  Free-energy landscapes of protein domain movements upon ligand binding. , 2011, The journal of physical chemistry. B.

[194]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[195]  K. E.,et al.  The Theory of Heat , 1929, Nature.

[196]  T. Silverstein An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases , 2014, Journal of Bioenergetics and Biomembranes.

[197]  M. Esposito,et al.  Conservation laws and work fluctuation relations in chemical reaction networks. , 2018, The Journal of chemical physics.

[198]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[199]  R. Milo,et al.  Cell Biology by the Numbers , 2015 .

[200]  A. Berdis Mechanisms of DNA polymerases. , 2009, Chemical reviews.

[201]  Robert Marsland,et al.  Statistical Physics of Adaptation , 2014, 1412.1875.

[202]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[203]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[204]  David A. Sivak,et al.  Optimal Control of Transitions between Nonequilibrium Steady States , 2013, PloS one.

[205]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[206]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[207]  Richard B. Vallee,et al.  Control of cytoplasmic dynein force production and processivity by its C-terminal domain , 2015, Nature Communications.

[208]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[209]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[210]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[211]  B. Machta Dissipation Bound for Thermodynamic Control. , 2015, Physical review letters.

[212]  Shoji Takada,et al.  Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[213]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[214]  Massimiliano Esposito,et al.  Nonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics , 2016, 1602.07257.

[215]  Samara L. Reck-Peterson,et al.  The cytoplasmic dynein transport machinery and its many cargoes , 2018, Nature Reviews Molecular Cell Biology.

[216]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[217]  M. Rief,et al.  Myosin V stepping mechanism , 2007, Proceedings of the National Academy of Sciences.

[218]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[219]  Yuhai Tu,et al.  The energy-speed-accuracy tradeoff in sensory adaptation , 2012, Nature Physics.

[220]  J. Weber,et al.  Structural characterization of the interaction of the delta and alpha subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy. , 2005, Biochemistry.

[221]  J. Sellers,et al.  Direct observation of the myosin-V power stroke and its reversal , 2010, Nature Structural &Molecular Biology.

[222]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[223]  D. Mizuno,et al.  Nonequilibrium Energetics of Molecular Motor Kinesin. , 2017, Physical review letters.

[224]  Hendrik Sielaff,et al.  Domain compliance and elastic power transmission in rotary FOF1-ATPase , 2008, Proceedings of the National Academy of Sciences.

[225]  Paul R Selvin,et al.  Why kinesin is so processive , 2009, Proceedings of the National Academy of Sciences.

[226]  Toshio Yanagida,et al.  Fluctuation as a tool of biological molecular machines , 2008, Biosyst..

[227]  Michael Börsch,et al.  Di ff usion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy Published as part of the Accounts of Chemical Research special issue “ Fundamental Aspects of Self-Powered Nano-and Micromotors ” , 2018 .

[228]  R. Dean Astumian,et al.  Generalized Efficiency and its Application to Microscopic Engines , 1999 .

[229]  Heather L Tierney,et al.  Experimental demonstration of a single-molecule electric motor. , 2011, Nature nanotechnology.

[230]  R. Eichhorn,et al.  Efficiency Fluctuations in Microscopic Machines. , 2019, Physical review letters.

[231]  J. Onuchic,et al.  Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[232]  Yunxin Zhang,et al.  The Efficiency of Molecular Motors , 2008, 0810.1168.

[233]  A. C. Barato,et al.  Universal bound on the Fano factor in enzyme kinetics. , 2015, The journal of physical chemistry. B.

[234]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[235]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[236]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[237]  Anatoly B Kolomeisky,et al.  Collective dynamics of processive cytoskeletal motors. , 2016, Soft matter.

[238]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[239]  J. Puglisi,et al.  Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions , 2015, Cell.

[240]  Paul François,et al.  Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism , 2013, Proceedings of the National Academy of Sciences.

[241]  Udo Seifert,et al.  Sensory capacity: An information theoretical measure of the performance of a sensor. , 2015, Physical review. E.

[242]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli. , 1993, Biophysical journal.

[243]  Grant M. Rotskoff,et al.  Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[244]  Andrew G. W. Leslie,et al.  The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution , 2000, Nature Structural Biology.

[245]  Samudra Sengupta,et al.  Substrate catalysis enhances single-enzyme diffusion. , 2010, Journal of the American Chemical Society.

[246]  C. Doering,et al.  Randomly rattled ratchets , 1995 .

[247]  R. Iino,et al.  Stiffness of γ subunit of F1-ATPase , 2010, European Biophysics Journal.

[248]  Uri Alon,et al.  The geometry of the Pareto front in biological phenotype space , 2013, Ecology and evolution.

[249]  M. Gilson,et al.  Motor-like Properties of Nonmotor Enzymes. , 2018, Biophysical journal.

[250]  D. Hackney,et al.  The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[251]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[252]  David J Schwab,et al.  Energetic costs of cellular computation , 2012, Proceedings of the National Academy of Sciences.

[253]  H. Qian A simple theory of motor protein kinetics and energetics. , 1997, Biophysical chemistry.

[254]  John D. Chodera,et al.  Time Step Rescaling Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems , 2013, The journal of physical chemistry. B.

[255]  Tristan Tabouillot,et al.  Enzyme molecules as nanomotors. , 2013, Journal of the American Chemical Society.

[256]  B. Houston Encyclopedia of Genetics , 2002 .

[257]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[258]  J. Sellers,et al.  Myosins: a diverse superfamily. , 2000, Biochimica et biophysica acta.

[259]  The "second stalk" of Escherichia coli ATP synthase: structure of the isolated dimerization domain. , 2002, Biochemistry.

[260]  Y. Roichman,et al.  Experimental Realization of an Information Machine with Tunable Temporal Correlations. , 2018, Physical review letters.

[261]  Pieter Rein ten Wolde,et al.  Thermodynamics of Computational Copying in Biochemical Systems , 2015, 1503.00909.

[262]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[263]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[264]  R. Astumian,et al.  DNA polymerase as a molecular motor and pump. , 2014, ACS nano.

[265]  C. Van den Broeck,et al.  Efficiency of isothermal molecular machines at maximum power. , 2012, Physical review letters.

[266]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[267]  Jordan M Horowitz,et al.  Imitating chemical motors with optimal information motors. , 2012, Physical review letters.

[268]  M. Ratner,et al.  Light-responsive organic flashing electron ratchet , 2017, Proceedings of the National Academy of Sciences.

[269]  Debashish Chowdhury,et al.  Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules. , 2013, Biophysical journal.

[270]  Jeremy L. England,et al.  Statistical physics of self-replication. , 2012, The Journal of chemical physics.

[271]  J. Knowles,et al.  Evolution of enzyme function and the development of catalytic efficiency. , 1976, Biochemistry.

[272]  R. Iino,et al.  Direct observation of intermediate states during the stepping motion of kinesin-1. , 2016, Nature chemical biology.

[273]  Alexandra Zidovska,et al.  Surface Fluctuations and Coalescence of Nucleolar Droplets in the Human Cell Nucleus. , 2018, Physical review letters.

[274]  Shoichi Toyabe,et al.  Thermodynamic efficiency and mechanochemical coupling of F1-ATPase , 2011, Proceedings of the National Academy of Sciences.

[275]  G. A. Blab,et al.  Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry , 2015 .

[276]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[277]  Yuhai Tu,et al.  Free energy cost of reducing noise while maintaining a high sensitivity. , 2015, Physical review letters.

[278]  T. McKeithan,et al.  Kinetic proofreading in T-cell receptor signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[279]  R. Golestanian,et al.  Exothermicity Is Not a Necessary Condition for Enhanced Diffusion of Enzymes. , 2017, Nano letters.

[280]  A. Kolomeisky,et al.  Simple mechanochemistry describes the dynamics of kinesin molecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[281]  Helmut Grubmüller,et al.  Torsional elasticity and energetics of F1-ATPase , 2011, Proceedings of the National Academy of Sciences.

[282]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[283]  L. Mahadevan,et al.  Motility powered by supramolecular springs and ratchets. , 2000, Science.

[284]  Z. Koza Maximal force exerted by a molecular motor. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[285]  Udo Seifert,et al.  Cost and Precision of Brownian Clocks , 2016, 1610.07960.

[286]  U. Seifert First and Second Law of Thermodynamics at Strong Coupling. , 2015, Physical review letters.

[287]  David A. Sivak,et al.  Toward the design principles of molecular machines , 2017, 1701.04868.

[288]  E. Purcell Life at Low Reynolds Number , 2008 .

[289]  G. Oster,et al.  The physics of molecular motors. , 2001, Accounts of chemical research.

[290]  David A. Sivak,et al.  Geometry of thermodynamic control. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[291]  R. Astumian Stochastic conformational pumping: a mechanism for free-energy transduction by molecules. , 2011, Annual review of biophysics.

[292]  M. Ikeguchi,et al.  Rotation Mechanism of Molecular Motor V1-ATPase Studied by Multiscale Molecular Dynamics Simulation , 2017, Biophysical journal.

[293]  Changbong Hyeon,et al.  Energetic Costs, Precision, and Transport Efficiency of Molecular Motors. , 2018, The journal of physical chemistry letters.

[294]  Jianhua Xing,et al.  From continuum Fokker-Planck models to discrete kinetic models. , 2005, Biophysical journal.

[295]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[296]  Udo Seifert,et al.  Rate of Mutual Information Between Coarse-Grained Non-Markovian Variables , 2013, 1306.1698.

[297]  Jianhua Xing,et al.  Making ATP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[298]  Udo Seifert,et al.  Stochastic thermodynamics with information reservoirs. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[299]  B. Böttcher ATP synthase , 2000, EMBO reports.

[300]  E. Bromley,et al.  The bar-hinge motor: a synthetic protein design exploiting conformational switching to achieve directional motility , 2019, New Journal of Physics.

[301]  Udo Seifert,et al.  Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. , 2017, Physical review letters.