The Fiber of Persistent Homology for simplicial complexes

We study the inverse problem for persistent homology: For a fixed simplicial complex K, we analyse the fiber of the continuous map PH on the space of filters that assigns to a filter f : K Ñ R the total barcode of its associated sublevel set filtration of K. We find that PH is best understood as a map of stratified spaces. Over each stratum of the barcode space the map PH restricts to a (trivial) fiber bundle with fiber a polyhedral complex. Amongst other we derive a bound for the dimension of the fiber depending on the number of distinct endpoints in the barcode. Furthermore, taking the inverse image PH ́1 can be extended to a monodromy functor on the (entrance path) category of barcodes. We demonstrate our theory on the example of the simplicial triangle giving a complete description of all fibers and monodromy maps. This example is rich enough to have a Möbius band as one of its fibers.

[1]  F. Quinn Homotopically stratified sets , 1988 .

[2]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[3]  S. Mukherjee,et al.  Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.

[4]  Sayan Mukherjee,et al.  How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms , 2018, Transactions of the American Mathematical Society, Series B.

[5]  Jonathan Woolf The fundamental category of a stratified space , 2008 .

[6]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[7]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[8]  Konstantin Mischaikow,et al.  Contractibility of a persistence map preimage , 2018, Journal of Applied and Computational Topology.

[9]  S. A. Barannikov,et al.  The framed Morse complex and its invariants , 1994 .

[10]  S. Weinberger The Topological Classification of Stratified Spaces , 1995 .

[11]  Justin Curry,et al.  Classification of Constructible Cosheaves , 2016, 1603.01587.

[12]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[13]  Matilde Marcolli,et al.  Nori Diagrams and Persistent Homology , 2019, Mathematics in Computer Science.

[14]  W Hurewicz,et al.  ON THE CONCEPT OF FIBER SPACE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[16]  Steve Oudot,et al.  Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.

[17]  Tamal K. Dey,et al.  Comparing Graphs via Persistence Distortion , 2015, SoCG.

[18]  Jun Zhang,et al.  Persistent homology and Floer-Novikov theory , 2015, 1502.07928.

[19]  Rachel Levanger,et al.  Persistent homology and Euler integral transforms , 2018, J. Appl. Comput. Topol..

[20]  Brittany Terese Fasy,et al.  Persistence Diagrams for Efficient Simplicial Complex Reconstruction , 2019, ArXiv.

[21]  DAVID A. Miller Popaths and Holinks , 2009, 0909.1201.

[22]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[23]  L. Polterovich,et al.  Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.

[24]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[25]  Steve Oudot,et al.  A Framework for Differential Calculus on Persistence Barcodes , 2019, Foundations of Computational Mathematics.

[26]  Brittany Terese Fasy,et al.  Moduli spaces of morse functions for persistence , 2019, Journal of Applied and Computational Topology.

[27]  Justin Curry,et al.  The fiber of the persistence map for functions on the interval , 2017, Journal of Applied and Computational Topology.

[28]  David Treumann,et al.  Exit paths and constructible stacks , 2007, Compositio Mathematica.

[29]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[30]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[31]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[32]  Daniel Salinas,et al.  Reconstructing Embedded Graphs from Persistence Diagrams , 2020, Comput. Geom..

[33]  Ulrich Bauer,et al.  Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..

[34]  Steve Oudot,et al.  Barcode embeddings for metric graphs , 2021, Algebraic & Geometric Topology.