The Fiber of Persistent Homology for simplicial complexes
暂无分享,去创建一个
[1] F. Quinn. Homotopically stratified sets , 1988 .
[2] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2007, SCG '07.
[3] S. Mukherjee,et al. Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.
[4] Sayan Mukherjee,et al. How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms , 2018, Transactions of the American Mathematical Society, Series B.
[5] Jonathan Woolf. The fundamental category of a stratified space , 2008 .
[6] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[7] Mason A. Porter,et al. A roadmap for the computation of persistent homology , 2015, EPJ Data Science.
[8] Konstantin Mischaikow,et al. Contractibility of a persistence map preimage , 2018, Journal of Applied and Computational Topology.
[9] S. A. Barannikov,et al. The framed Morse complex and its invariants , 1994 .
[10] S. Weinberger. The Topological Classification of Stratified Spaces , 1995 .
[11] Justin Curry,et al. Classification of Constructible Cosheaves , 2016, 1603.01587.
[12] Peter Bubenik,et al. Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..
[13] Matilde Marcolli,et al. Nori Diagrams and Persistent Homology , 2019, Mathematics in Computer Science.
[14] W Hurewicz,et al. ON THE CONCEPT OF FIBER SPACE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[15] Steve Oudot,et al. Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.
[16] Steve Oudot,et al. Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.
[17] Tamal K. Dey,et al. Comparing Graphs via Persistence Distortion , 2015, SoCG.
[18] Jun Zhang,et al. Persistent homology and Floer-Novikov theory , 2015, 1502.07928.
[19] Rachel Levanger,et al. Persistent homology and Euler integral transforms , 2018, J. Appl. Comput. Topol..
[20] Brittany Terese Fasy,et al. Persistence Diagrams for Efficient Simplicial Complex Reconstruction , 2019, ArXiv.
[21] DAVID A. Miller. Popaths and Holinks , 2009, 0909.1201.
[22] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[23] L. Polterovich,et al. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.
[24] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[25] Steve Oudot,et al. A Framework for Differential Calculus on Persistence Barcodes , 2019, Foundations of Computational Mathematics.
[26] Brittany Terese Fasy,et al. Moduli spaces of morse functions for persistence , 2019, Journal of Applied and Computational Topology.
[27] Justin Curry,et al. The fiber of the persistence map for functions on the interval , 2017, Journal of Applied and Computational Topology.
[28] David Treumann,et al. Exit paths and constructible stacks , 2007, Compositio Mathematica.
[29] Henry Adams,et al. Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..
[30] W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.
[31] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[32] Daniel Salinas,et al. Reconstructing Embedded Graphs from Persistence Diagrams , 2020, Comput. Geom..
[33] Ulrich Bauer,et al. Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..
[34] Steve Oudot,et al. Barcode embeddings for metric graphs , 2021, Algebraic & Geometric Topology.