FAST IMAGE AUTO-ANNOTATION WITH VISUAL VECTOR APPROXIMATION CLUSTERS

The paper proposes a simple novel technique to automatically determine a set of keywords that describe the content of an image. The images are segmented in ‘blobs’, which are approximatively classified using discretized features space. This results in a small number of visual Vector Approximation Clusters (VAC), which allows to train the joint probability table of the visual features and the textual annotations from a training data set. Futhermore a simple Bayes model is used to determine the probability that a keyword describes a test image. The paper includes an experimental evaluation on COREL database. We compare our approach with state of the art auto-annotation methods using the same database, words set and scoring method. Results show that our simple method give similar results than state of the art models.

[1]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[2]  David A. Forsyth,et al.  The effects of segmentation and feature choice in a translation model of object recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[4]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[5]  Jing Peng,et al.  Kernel indexing for relevance feedback image retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Miguel Moreira The use of Boolean concepts in general classification contexts , 2000 .

[7]  Hervé Glotin,et al.  Approximation of Linear Fisher Discriminant Analysis for Adaptive Word Dependent Visual Feature Sets Improving Image Auto-annotation , 2005 .

[8]  Daniel Gatica-Perez,et al.  PLSA-based image auto-annotation: constraining the latent space , 2004, MULTIMEDIA '04.

[9]  Patrick Gros,et al.  Recherche par similarités dans les bases de données multidimensionnelles: panorama des techniques d'indexation , 2002, Ingénierie des Systèmes d Inf..

[10]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[11]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Sabrina Tollari Filtrage de l'indexation textuelle d'une image au moyen du contenu visuel pour un moteur de recherche d'images sur le web , 2005, CORIA.

[13]  Daniel Gatica-Perez,et al.  On image auto-annotation with latent space models , 2003, ACM Multimedia.

[14]  Hervé Glotin,et al.  Enhancement of Textual Images Classification Using Segmented Visual Contents for Image Search Engine , 2005, Multimedia Tools and Applications.

[15]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.