Alloys-by-design: Application to titanium alloys for optimal superplasticity

[1]  R. Reed,et al.  Combined modelling and miniaturised characterisation of high-temperature forging in a nickel-based superalloy , 2018, Materials & Design.

[2]  R. Reed,et al.  Mechanisms of Superplasticity in Titanium Alloys: Measurement, In Situ Observations and Rationalization , 2018, Defect and Diffusion Forum.

[3]  E. Sato,et al.  Transgranular dislocation activities and substructural evolutions accommodating two-dimensional grain boundary sliding in ODS ferritic steel , 2017 .

[4]  S. Semiatin,et al.  Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint) , 2016 .

[5]  E. Sato,et al.  Two-dimensional grain boundary sliding and mantle dislocation accommodation in ODS ferritic steel , 2016 .

[6]  Nam Phan,et al.  Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research , 2016 .

[7]  Roger C. Reed,et al.  On the mechanisms of superplasticity in Ti–6Al–4V , 2016 .

[8]  R. Reed,et al.  Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications , 2015 .

[9]  S. Suwas,et al.  The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B , 2013 .

[10]  Jianguo Lin,et al.  Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions , 2013 .

[11]  H. Yang,et al.  Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution , 2011 .

[12]  Miaoquan Li,et al.  The superplasticity and microstructure evolution of TC11 titanium alloy , 2011 .

[13]  S. Abbasi,et al.  Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions , 2010 .

[14]  He Yang,et al.  A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy , 2010 .

[15]  Jiao Luo,et al.  Constitutive model for high temperature deformation of titanium alloys using internal state variables , 2010 .

[16]  Amit K. Ghosh,et al.  Plastic Flow and Microstructure Evolution during Low-Temperature Superplasticity of Ultrafine Ti-6Al-4V Sheet Material , 2010 .

[17]  T. Langdon Seventy-five years of superplasticity: historic developments and new opportunities , 2009 .

[18]  A. J. Barnes Superplastic Forming 40 Years and Still Growing , 2007 .

[19]  G. Lütjering,et al.  Titanium : Engineering Materials and Processes , 2007 .

[20]  Chun‐Sing Lee,et al.  Dynamic-coarsening behavior of an α/β titanium alloy , 2006 .

[21]  S. Semiatin,et al.  Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing , 2006 .

[22]  Y. Liu,et al.  Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling , 2005 .

[23]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[24]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[25]  Y. Liu,et al.  A set of unified constitutive equations for modelling microstructure evolution in hot deformation , 2003 .

[26]  J. Kim,et al.  Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure , 2003 .

[27]  R. C. Picu,et al.  Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part II: constitutive modeling , 2002 .

[28]  Thomas R. Bieler,et al.  The effect of alpha platelet thickness on plastic flow during hot working of TI–6Al–4V with a transformed microstructure , 2001 .

[29]  Jung-Min Kim,et al.  Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy , 1999 .

[30]  Min Zhou,et al.  Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834 , 1998 .

[31]  S. Semiatin,et al.  Hot workability of titanium and titanium aluminide alloys—an overview , 1998 .

[32]  F. Dunne Inhomogeneity of microstructure in superplasticity and its effect on ductility , 1998 .

[33]  Jeffrey Wadsworth,et al.  Superplasticity in metals and ceramics , 1997 .

[34]  Fionn P.E. Dunne,et al.  Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy , 1996 .

[35]  Oscar A. Kaibyshev,et al.  Superplasticity of Alloys, Intermetallides and Ceramics , 1992 .

[36]  A. Geçkinli Grain boundary sliding model for superplastic deformation , 1983 .