Observations on entanglement entropy in massive QFT’s

A bstractWe identify various universal contributions to the entanglement entropy for massive free fields. As well as the ‘area’ terms found in [1], we find other geometric contributions of the form discussed in [2]. We also compute analogous contributions for a strongly coupled field theory using the AdS/CFT correspondence. In this case, we find the results for strong and weak coupling do not agree.

[1]  L. Romans,et al.  Gauged N = 8 supergravity in five dimensions☆ , 1985 .

[2]  I. Klebanov,et al.  On shape dependence and RG flow of entanglement entropy , 2012, 1204.4160.

[3]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[4]  A. Higuchi,et al.  Spectral functions and zeta functions in hyperbolic spaces , 1994 .

[5]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[6]  Alexander Grigor'yan,et al.  Upper Bounds of Derivatives of the Heat Kernel on an Arbitrary Complete Manifold , 1995 .

[7]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[8]  M. J. Strassler,et al.  A Comment on Entropy and Area , 1994 .

[9]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[10]  H. Casini,et al.  Entanglement entropy in free quantum field theory , 2009 .

[11]  J. Sparks,et al.  AdS4/CFT3 duals from M2-branes at hypersurface singularities and their deformations , 2009, 0909.2036.

[12]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[13]  A. Grigor’yan,et al.  The Heat Kernel on Hyperbolic Space , 1998 .

[14]  B. Safdi Exact and numerical results on entanglement entropy in (5 + 1)-dimensional CFT , 2012, 1206.5025.

[15]  R. Myers,et al.  On holographic entanglement entropy and higher curvature gravity , 2011, 1101.5813.

[16]  R. Myers,et al.  Holographic c-theorems in arbitrary dimensions , 2010, 1011.5819.

[17]  S. Solodukhin Entanglement entropy, conformal invariance and extrinsic geometry , 2008, 0802.3117.

[18]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[19]  A. Vishwanath,et al.  Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions , 2011, 1108.4038.

[20]  James T. Liu,et al.  Thermodynamics of the N = 2 ∗ strongly coupled plasma , 2007, hep-th/0701142.

[21]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[22]  M. Huerta Numerical determination of the entanglement entropy for free fields in the cylinder , 2011, 1112.1277.

[23]  F. Wilczek,et al.  Some calculable contributions to entanglement entropy. , 2010, Physical review letters.

[24]  Mark Burgin,et al.  Foundations of Information Theory , 2008, ArXiv.

[25]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory: II , 2010, 1011.5482.

[26]  H. Casini,et al.  Remarks on the entanglement entropy for disconnected regions , 2008, 0812.1773.

[27]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[28]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[29]  S. Theisen,et al.  Entanglement entropy, trace anomalies and holography ✩ , 2008, 0802.1017.

[30]  M. Duff Observations on Conformal Anomalies , 1977 .

[31]  S. C. Bariloche,et al.  Mutual information challenges entropy bounds , 2006, gr-qc/0609126.

[32]  M. Cvetič,et al.  Communications in Mathematical Physics Ricci-Flat Metrics , Harmonic Forms and Brane Resolutions , 2002 .

[33]  Paolo Zanardi,et al.  Ground state entanglement and geometric entropy in the Kitaev model , 2005 .

[34]  E. Mazet,et al.  Théorèmes de Comparaison en Géométrie Riemannienne , 1976 .

[35]  D. Das,et al.  Geometric Entropy , 2010, 1007.4085.

[36]  Hong Liu,et al.  A refinement of entanglement entropy and the number of degrees of freedom , 2012, 1202.2070.

[37]  E. Fradkin,et al.  Universal entanglement entropy in 2D conformal quantum critical points , 2008 .

[38]  P. Carini,et al.  Strongly coupled plasma , 1978 .

[39]  M. Hertzberg Entanglement entropy in scalar field theory , 2012, 1209.4646.

[40]  B. Swingle,et al.  Mutual information and the structure of entanglement in quantum field theory , 2010, 1010.4038.

[41]  I. Klebanov,et al.  Is renormalized entanglement entropy stationary at RG fixed points? , 2012, 1207.3360.

[42]  S. C. Bariloche,et al.  Entanglement entropy for the n-sphere , 2010, 1007.1813.

[43]  A. Tseytlin,et al.  Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS / CFT correspondence , 2000, hep-th/0001041.

[44]  R.Ionicioiu,et al.  Ground state entanglement and geometric entropy in the Kitaev's model , 2004, quant-ph/0406202.

[45]  R. Jackiw,et al.  Classical and quantum scattering on a spinning cone , 1989 .

[46]  M. Raamsdonk,et al.  Comments on quantum gravity and entanglement , 2009, 0907.2939.

[47]  ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY: A NON-TECHNICAL INTRODUCTION , 2005, quant-ph/0505193.

[48]  N. Warner,et al.  New Vacua of Gauged N=8 Supergravity , 1998, hep-th/9812035.

[49]  村井 康久 B. S. DeWitt: Dynamical Theory of Groups and Fields (Document on Modern Physics), Gordon and Breach, New York, 1965, 248頁, 16.0×23.5cm, $5.95. , 1966 .

[50]  Mark Van Raamsdonk Building up spacetime with quantum entanglement , 2010 .

[51]  R. Camporesi The spinor heat kernel in maximally symmetric spaces , 1992 .

[52]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .

[53]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[54]  R. Myers,et al.  Holographic calculations of Rényi entropy , 2011, 1110.1084.

[55]  Entanglement entropy in critical phenomena and analog models of quantum gravity , 2006, hep-th/0602134.

[56]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory , 2009, 0905.2069.

[57]  N=2 supersymmetric RG flows and the IIB dilaton , 2000, hep-th/0004063.

[58]  D. Tsimpis,et al.  Spinorial cohomology of abelian d=10 super-Yang-Mills at alpha'^3 , 2002, hep-th/0205165.

[59]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[60]  D. Jafferis Quantum corrections to N=2 Chern-Simons theories with flavor and their AdS4 duals , 2009, 0911.4324.

[61]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[62]  Robert C. Myers,et al.  Entanglement entropy for singular surfaces , 2012, 1206.5225.

[63]  D. Jafferis Quantum corrections to $ \mathcal{N}=2 $ Chern-Simons theories with flavor and their AdS4 duals , 2013 .

[64]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[65]  E. Fradkin,et al.  Universal entanglement entropy in two-dimensional conformal quantum critical points , 2008, Physical Review B.

[66]  J. S. Dowker Quantum field theory on a cone , 1977 .

[67]  R. Myers,et al.  Some calculable contributions to holographic entanglement entropy , 2011, 1105.6055.

[68]  Karol Zyczkowski,et al.  Rényi Extrapolation of Shannon Entropy , 2003, Open Syst. Inf. Dyn..

[69]  Geometric classification of conformal anomalies in arbitrary dimensions , 1993, hep-th/9302047.

[70]  Twenty years of the Weyl anomaly , 1993, hep-th/9308075.

[71]  D. Kabat Black hole entropy and entropy of entanglement , 1995, hep-th/9503016.

[72]  Dowker Vacuum averages for arbitrary spin around a cosmic string. , 1987, Physical review. D, Particles and fields.

[73]  R. Jackiw,et al.  Classical and quantum scattering on a cone , 1988 .

[74]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[75]  F. Nogueira,et al.  The gravity dual of a density matrix , 2012, 1204.1330.

[76]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[77]  C. Hoyos,et al.  Screening in strongly coupled $ \mathcal{N} = {2^*} $ supersymmetric Yang-Mills plasma , 2011, 1108.2053.