The transition from the stationary state to a sequence of nonstationary states in the gyromonotron oscillator is experimentally characterized for the first time. We have also demonstrated the stationary operation of a gyrotron backward-wave oscillator at a beam current far in excess of the generally predicted nonstationary threshold. This difference in nonlinear behavior has been investigated and shown to be fundamental with a comparative analysis of the feedback mechanisms, energy deposition profiles, and field shaping processes involved in these two types of oscillations.