DNA-mediated electrochemistry.

The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry.

[1]  J. Christopher Fromme,et al.  Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase , 2004, Nature.

[2]  J. Barton,et al.  Long-range DNA charge transport. , 2003, The Journal of organic chemistry.

[3]  Andrew K. Udit,et al.  Differential ionic permeation of DNA-modified electrodes. , 2007, The journal of physical chemistry. B.

[4]  J Justin Gooding,et al.  Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers. , 2004, Journal of the American Chemical Society.

[5]  A. Bard,et al.  Scanning electrochemical microscopy. 51. Studies of self-assembled monolayers of DNA in the absence and presence of metal ions. , 2005, The journal of physical chemistry. B.

[6]  A. Steel,et al.  Electrochemical quantitation of DNA immobilized on gold. , 1998, Analytical chemistry.

[7]  R. Cunningham,et al.  The role of the iron-sulfur cluster in Escherichia coli endonuclease III. A resonance Raman study. , 1992, The Journal of biological chemistry.

[8]  J. Barton,et al.  An electrochemical probe of DNA stacking in an antisense oligonucleotide containing a C3'-endo-locked sugar. , 2002, Angewandte Chemie.

[9]  K. Miki,et al.  Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA , 2008, Proceedings of the National Academy of Sciences.

[10]  G. Schuster,et al.  Long-range charge transfer in DNA: transient structural distortions control the distance dependence. , 2000, Accounts of chemical research.

[11]  Katherine J Odenthal,et al.  An introduction to electrochemical DNA biosensors. , 2007, The Analyst.

[12]  Akimitsu Okamoto,et al.  Photostimulated hole transport through a DNA duplex immobilized on a gold electrode. , 2004, Journal of the American Chemical Society.

[13]  Mechanism Giese Long-Distance Charge Transport in DNA: The Hopping , 2000 .

[14]  J. Barton,et al.  Direct electrochemistry of endonuclease III in the presence and absence of DNA. , 2006, Journal of the American Chemical Society.

[15]  J. Xiang,et al.  Sensitive and Label-Free Detection of DNA by Surface Plasmon Resonance , 2007 .

[16]  A. Bard,et al.  Scanning electrochemical microscopy. , 2001, Annual review of analytical chemistry.

[17]  Sheila S. David,et al.  Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair. , 1998, Chemical reviews.

[18]  Marc Tornow,et al.  Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  James Hone,et al.  Conductivity of a single DNA duplex bridging a carbon nanotube gap. , 2008, Nature nanotechnology.

[20]  Elizabeth M. Boon,et al.  DNA-mediated charge transport for DNA repair , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Kemin Wang,et al.  Electrical switching of DNA monolayers investigated by surface plasmon resonance. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  Jacqueline K Barton,et al.  Electrical detection of TATA binding protein at DNA-modified microelectrodes. , 2008, Journal of the American Chemical Society.

[23]  Elizabeth M. Boon,et al.  DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA. , 2003, Bioconjugate chemistry.

[24]  A. Szent-Györgyi,et al.  ON THE ELECTRON DONATING PROPERTIES OF CARCINOGENS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Barton,et al.  DNA-mediated electrochemistry of disulfides on graphite. , 2007, Journal of the American Chemical Society.

[26]  Elizabeth M. Boon,et al.  Morphology of 15-mer Duplexes Tethered to Au(111) Probed Using Scanning Probe Microscopy , 2001 .

[27]  Jacqueline K. Barton,et al.  Oxidative DNA damage through long-range electron transfer , 1996, Nature.

[28]  J. Barton,et al.  Sequence-dependent DNA Dynamics: The Regulator of DNA-mediated Charge Transport , 2006 .

[29]  J. Barton,et al.  Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. , 2007, Bioconjugate chemistry.

[30]  Joel S. Silverman,et al.  Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation , 2003 .

[31]  Dejian Zhou,et al.  Use of Atomic Force Microscopy for Making Addresses in DNA Coatings , 2002 .

[32]  M J Cannon,et al.  A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY. , 1998, Biochemistry.

[33]  J. Rusling Biomolecular Films : Design, Function, and Applications , 2003 .

[34]  Elizabeth M. Boon,et al.  Charge transport in DNA. , 2002, Current opinion in structural biology.

[35]  J. Barton,et al.  In situ scanning tunneling microscopy of DNA-modified gold surfaces: bias and mismatch dependence. , 2003, Journal of the American Chemical Society.

[36]  Hua-Zhong Yu,et al.  Voltammetric procedure for examining DNA-modified surfaces: quantitation, cationic binding activity, and electron-transfer kinetics. , 2003, Analytical chemistry.

[37]  J. Tainer,et al.  Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. , 1995, The EMBO journal.

[38]  M. Robert,et al.  Electron transfer in DNA and in DNA-related biological processes. Electrochemical insights. , 2008, Chemical reviews.

[39]  Elizabeth M. Boon,et al.  Reduction of Ferricyanide by Methylene Blue at a DNA-Modified Rotating-Disk Electrode , 2003 .

[40]  J. Barton,et al.  Long-range oxidative damage to DNA: effects of distance and sequence. , 1999, Chemistry & biology.

[41]  J. Barton,et al.  DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. , 2005, Biochemistry.

[42]  Elizabeth M. Boon,et al.  An electrical probe of protein–DNA interactions on DNA-modified surfaces , 2002, Nature Biotechnology.

[43]  R. Cunningham,et al.  Endonuclease III is an iron-sulfur protein. , 1989, Biochemistry.

[44]  J. Barton,et al.  Effects of the photooxidant on DNA-mediated charge transport. , 2004, Journal of the American Chemical Society.

[45]  J. Barton,et al.  Electrochemical detection of lesions in DNA. , 2005, Bioconjugate chemistry.

[46]  H. Olin,et al.  Spatial and Mechanical Properties of Dilute DNA Monolayers on Gold Imaged by AFM , 2003 .

[47]  B. Demple,et al.  Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. , 2002, Methods in enzymology.

[48]  M. Hill,et al.  Intercalative Stacking: A Critical Feature of DNA Charge-Transport Electrochemistry , 2003 .

[49]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[50]  S O Kelley,et al.  Electrochemistry of methylene blue bound to a DNA-modified electrode. , 1997, Bioconjugate chemistry.

[51]  U. Rant,et al.  Dynamic electrical switching of DNA layers on a metal surface , 2004 .

[52]  Yuyuan Tian,et al.  Study of single-nucleotide polymorphisms by means of electrical conductance measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Schuhmann,et al.  Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. , 2004, Angewandte Chemie.

[54]  J Justin Gooding,et al.  Enzymatic synthesis of redox-labeled RNA and dual-potential detection at DNA-modified electrodes. , 2004, Angewandte Chemie.

[55]  Elizabeth M. Boon,et al.  Mutation detection by electrocatalysis at DNA-modified electrodes , 2000, Nature Biotechnology.

[56]  M. Hill,et al.  Long-Range Electron Transfer through DNA Films. , 1999, Angewandte Chemie.

[57]  F. Zhou,et al.  Scanning electrochemical microscopy imaging of DNA microarrays using methylene blue as a redox-active intercalator. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[58]  J. Barton,et al.  PHOTOINDUCED ELECTRON TRANSFER IN ETHIDIUM-MODIFIED DNA DUPLEXES : DEPENDENCE ON DISTANCE AND BASE STACKING , 1997 .

[59]  Eileen M. Spain,et al.  Orienting DNA helices on gold using applied electric fields , 1998 .

[60]  Elizabeth M. Boon,et al.  Single-base mismatch detection based on charge transduction through DNA. , 1999, Nucleic acids research.

[61]  J. Barton,et al.  Biological contexts for DNA charge transport chemistry. , 2008, Current opinion in chemical biology.

[62]  E. Wierzbiński,et al.  In situ electrochemical distance tunneling spectroscopy of ds-DNA molecules. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[63]  L. Ferretti,et al.  ON THE ELECTRON DONATING PROPERTIES OF CARCINOGENS , 2003 .

[64]  J. Tainer,et al.  Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. , 1992, Science.

[65]  J. Barton,et al.  Electrically monitoring DNA repair by photolyase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Barton,et al.  DNA binding shifts the redox potential of the transcription factor SoxR , 2008, Proceedings of the National Academy of Sciences.

[67]  Jacqueline K. Barton,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[68]  D. D. Eley,et al.  The semiconductivity of organic substances. Part 1 , 1953 .

[69]  Jacqueline K Barton,et al.  Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[70]  T. G. Drummond,et al.  Electron transfer rates in DNA films as a function of tether length. , 2004, Journal of the American Chemical Society.

[71]  Dejian Zhou,et al.  Label-free detection of DNA hybridization at the nanoscale: a highly sensitive and selective approach using atomic-force microscopy. , 2003, Angewandte Chemie.

[72]  The role of surface charging during the coadsorption of mercaptohexanol to DNA layers on gold: direct observation of desorption and layer reorientation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[73]  Akimitsu Okamoto,et al.  DNA hole transport on an electrode: application to effective photoelectrochemical SNP typing. , 2006, Journal of the American Chemical Society.

[74]  J. Barton,et al.  Influence of intervening mismatches on long-range guanine oxidation in DNA duplexes. , 2001, Journal of the American Chemical Society.

[75]  B Demple,et al.  Redox-operated genetic switches: the SoxR and OxyR transcription factors. , 2001, Trends in biotechnology.

[76]  M R Arkin,et al.  Long-range photoinduced electron transfer through a DNA helix. , 1993, Science.

[77]  Jacqueline K Barton,et al.  DNA electrochemistry through the base pairs not the sugar-phosphate backbone. , 2005, Journal of the American Chemical Society.

[78]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .