Interactive Corridor-Based Path Planning for Teleoperated Driving

Teleoperated driving, where an operator remotely takes over for some time-span, enables a fallback mode for autonomous vehicles. Complex urban scenarios, however, involve a too high workload for the operator. The main reasons for this are the communication delay and the lack of three-dimensional perception. This contribution presents a supervisory control concept with distinct human-machine interactions that explicitly addresses highly complex and sensitive driving tasks. By integrating automated driving functions and human-predefined corridors, a corridor-based planning scheme based on a shared autonomy approach is derived. Within the specified corridor, a modified Constrained CHOMP algorithm determines a collision-free path online using LiDAR sensor information. Since the operator remains outside the closed control loop, the proposed approach is insensitive w.r.t. any time delays. Real driving and simulation experiments confirm the effectiveness of the proposed approach and highlight both the achieved driving safety and the real time capability.

[1]  Tang Chen,et al.  Methods for Improving the Control of Teleoperated Vehicles , 2015 .

[2]  Helena Pongrac Gestaltung und Evaluation von virtuellen und Telepräsenzsystemen an Hand von Aufgabenleistung und Präsenzempfinden , 2011 .

[3]  David González,et al.  A Review of Motion Planning Techniques for Automated Vehicles , 2016, IEEE Transactions on Intelligent Transportation Systems.

[4]  Markus Lienkamp,et al.  Human-machine interaction as key technology for driverless driving - A trajectory-based shared autonomy control approach , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[5]  Thomas B. Sheridan,et al.  Supervisory control of remote manipulation , 1967, IEEE Spectrum.

[6]  Aurelio Piazzi,et al.  Smooth Path Generation for Wheeled Mobile Robots Using η 3 -Splines , 2010 .

[7]  Markus Lienkamp,et al.  Interactive path planning for teleoperated road vehicles in urban environments , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[8]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[9]  Frederic Chucholowski Eine vorausschauende Anzeige zur Teleoperation von Straßenfahrzeugen , 2015 .

[10]  Jennifer S. Kay STRIPE: remote driving using limited image data , 1995, CHI '95.

[11]  Markus Lienkamp,et al.  A System Design for Teleoperated Road Vehicles , 2013, ICINCO.

[12]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[13]  Sebastian Gnatzig Trajektorienbasierte Teleoperation von Straßenfahrzeugen auf Basis eines Shared-Control-Ansatzes , 2015 .

[14]  Tyler H. Shaw,et al.  From ‘automation’ to ‘autonomy’: the importance of trust repair in human–machine interaction , 2018, Ergonomics.

[15]  Corridor-Based Shared Autonomy for Teleoperated Driving , 2020 .

[16]  Costas S. Tzafestas,et al.  Virtual and Mixed Reality in Telerobotics: A Survey , 2006 .

[17]  B. Cooper Driving on the Surface of Mars Using the Rover Control Workstation , 1998 .

[18]  Pascal Fabian Bosshard Investigation of Trajectory Optimization for Multiple Car-Like Vehicles , 2015 .

[19]  A. Winfield,et al.  Future Directions in Tele-operated Robotics , 2005 .

[20]  Low Kin Huat Industrial Robotics: Programming, Simulation and Applications , 2006 .

[21]  Thomas B. Sheridan,et al.  Telerobotics , 1989, Autom..

[22]  Thomas B. Sheridan,et al.  Space teleoperation through time delay: review and prognosis , 1993, IEEE Trans. Robotics Autom..

[23]  Johannes Reuter Mobile robots trajectories with continuously differentiable curvature: an optimal control approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).