Second-order accurate normals from height functions

[1]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[2]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[3]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[4]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[5]  Markus Bussmann,et al.  Adaptive VOF with curvature‐based refinement , 2007 .

[6]  M. Davidson,et al.  An analysis of parasitic current generation in Volume of Fluid simulations , 2005 .

[7]  David J. Benson,et al.  Volume of fluid interface reconstruction methods for multi - material problems , 2002 .

[8]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[9]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[10]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[11]  P. Colella,et al.  Non-convex profile evolution in two dimensions using volume of fluids , 1997 .

[12]  S. Zaleski,et al.  Interface reconstruction with least‐square fit and split Eulerian–Lagrangian advection , 2003 .

[13]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[14]  C. W. Hirt,et al.  SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries , 1980 .

[15]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[16]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .