Slow light in insulator–metal–insulator plasmonic waveguides

We study numerically the slow-light capability of insulator–metal–insulator (IMI) plasmonic waveguides. Metal-induced losses are included in the calculation of the dispersion relations, and their effect on the slow-light properties of the waveguide is investigated. In addition to reducing the propagation lengths of surface plasmon polaritons, losses are found to limit the achievable slowdown factors and the practical potential of the device. To alleviate the problem, we consider active materials. Using realistic parameters, we find that a spectral region is then formed where a slow-light pulsed signal can achieve infinite propagation lengths or be amplified. The optical buffering capabilities of the IMI waveguide with losses are analyzed, and we conclude that while losses limit the buffering capabilities of the passive device, the use of active materials may combat the problem effectively from an application point of view.

[1]  Vinet,et al.  Guided optical waves in planar heterostructures with negative dielectric constant. , 1991, Physical review. B, Condensed matter.

[2]  V. Laude,et al.  Material loss influence on the complex band structure and group velocity in phononic crystals , 2011 .

[3]  P. Berini Long-range surface plasmon polaritons , 2009 .

[4]  T. Krauss Why do we need slow light , 2008 .

[5]  T. Kamalakis,et al.  Slow-light dark solitons in insulator-insulator-metal plasmonic waveguides , 2010 .

[6]  Kohzo Hakuta,et al.  Slow light produced by stimulated Raman scattering in solid hydrogen , 2002 .

[7]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[8]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[9]  D. Fedyanin,et al.  Surface plasmon?polaritons with negative and zero group velocities propagating in thin metal films , 2009 .

[10]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[11]  A. Dogariu,et al.  Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium. , 2001, Optics express.

[12]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[13]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[14]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[15]  Vincent Laude,et al.  Negative group velocities in metal-film optical waveguides , 1997 .

[16]  A. Boardman,et al.  Surface-polariton solitons , 1986 .

[17]  W. Liu,et al.  Mode transformation in waveguiding plasmonic structures , 2011 .

[18]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .

[19]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[20]  A. Schweinsberg,et al.  Tunable all-optical delays via Brillouin slow light in an optical fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[21]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[22]  M. Sandtke,et al.  Slow guided surface plasmons at telecom frequencies , 2007 .

[23]  Byoungho Lee,et al.  Trapping light in plasmonic waveguides. , 2010, Optics express.

[24]  Mihai Ibanescu,et al.  Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. , 2005, Physical review letters.

[25]  Georgios Veronis,et al.  Guided subwavelength slow-light mode supported by a plasmonic waveguide system. , 2010, Optics letters.

[26]  M. Fiddy,et al.  Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases. , 2010, Optics express.