Methods to investigate the structure and connectivity of the nervous system

ABSTRACT Understanding the computations that take place in neural circuits requires identifying how neurons in those circuits are connected to one another. In addition, recent research indicates that aberrant neuronal wiring may be the cause of several neurodevelopmental disorders, further emphasizing the importance of identifying the wiring diagrams of brain circuits. To address this issue, several new approaches have been recently developed. In this review, we describe several methods that are currently available to investigate the structure and connectivity of the brain, and discuss their strengths and limitations.

[1]  Russell M. Gordley,et al.  Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors , 2016, Cell.

[2]  J. Aster,et al.  Structural basis for autoinhibition of Notch , 2007, Nature Structural &Molecular Biology.

[3]  Milos Galic,et al.  Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function , 2016, Front. Synaptic Neurosci..

[4]  Stephan J. Sigrist,et al.  Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila , 2011, The Journal of Neuroscience.

[5]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[6]  C. Goodman,et al.  Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release , 1997, Neuron.

[7]  Ronald L. Davis,et al.  The GABAA Receptor RDL Suppresses the Conditioned Stimulus Pathway for Olfactory Learning , 2009, The Journal of Neuroscience.

[8]  A. Guo,et al.  CRASP: CFP reconstitution across synaptic partners. , 2016, Biochemical and biophysical research communications.

[9]  M. F. Ceriani,et al.  Circadian Pacemaker Neurons Change Synaptic Contacts across the Day , 2014, Current Biology.

[10]  Kei Ito,et al.  A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila , 2014, Front. Neural Circuits.

[11]  N. Perrimon,et al.  Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. , 2015, Developmental cell.

[12]  M. Oh,et al.  Gene transfer in the nervous system and implications for transsynaptic neuronal tracing , 2010, Expert opinion on biological therapy.

[13]  Kevin T. Beier,et al.  Neuroanatomy goes viral! , 2015, Front. Neuroanat..

[14]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[15]  I. Meinertzhagen,et al.  The genetic analysis of functional connectomics in Drosophila. , 2012, Advances in genetics.

[16]  Shai Berlin,et al.  Photoactivatable Genetically-Encoded Calcium Indicators for targeted neuronal imaging , 2015, Nature Methods.

[17]  G. Tavosanis,et al.  Assessing the Role of Cell-Surface Molecules in Central Synaptogenesis in the Drosophila Visual System , 2013, PloS one.

[18]  G. Struhl,et al.  Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. , 2000, Molecular cell.

[19]  Zhiyuan Lu,et al.  Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx , 2012, The Journal of comparative neurology.

[20]  Masahito Yamanaka,et al.  Introduction to super-resolution microscopy. , 2014, Microscopy.

[21]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[22]  Raphael Kopan,et al.  A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. , 2000, Molecular cell.

[23]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[24]  A. Diantonio Learning Something ORIGINal at the Drosophila Neuromuscular Junction , 1999, Neuron.

[25]  David J. Anderson,et al.  Visualizing Neuromodulation In Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing , 2012, Cell.

[26]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[27]  A. Sehgal,et al.  Identification of a Circadian Output Circuit for Rest:Activity Rhythms in Drosophila , 2014, Cell.

[28]  Gaia Tavosanis,et al.  Synaptic organization in the adult Drosophila mushroom body calyx , 2009, The Journal of comparative neurology.

[29]  H. Okano,et al.  GAL4/UAS‐WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways , 2000, Journal of neuroscience research.

[30]  James W. Truman,et al.  Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion , 2016, Scientific Reports.

[31]  S. Zipursky,et al.  Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system , 2016, eLife.

[32]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[33]  Feng Zhang,et al.  Microbial opsins: a family of single-component tools for optical control of neural activity. , 2011, Cold Spring Harbor protocols.

[34]  G. Struhl,et al.  Nuclear Access and Action of Notch In Vivo , 1998, Cell.

[35]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[36]  A. Nern,et al.  Cell-type-Specific Labeling of Synapses In Vivo through Synaptic Tagging with Recombination , 2014, Neuron.

[37]  L. Tian,et al.  Imaging neuronal activity with genetically encoded calcium indicators. , 2012, Cold Spring Harbor protocols.

[38]  D. Owald,et al.  Maturation of active zone assembly by Drosophila Bruchpilot , 2009, The Journal of cell biology.

[39]  R. Axel,et al.  Identifying Functional Connections of the Inner Photoreceptors in Drosophila using Tango-Trace , 2014, Neuron.

[40]  V. Ruta,et al.  Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila , 2015, Neuron.

[41]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[42]  Kristina D Micheva,et al.  Mapping Synapses by Conjugate Light-Electron Array Tomography , 2015, The Journal of Neuroscience.

[43]  G. Knott,et al.  Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics , 2015, Nature Methods.

[44]  E. Botvinick,et al.  Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. , 2012, Developmental cell.

[45]  E. Suzuki,et al.  Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback , 2015, Neuron.

[46]  J. Aster,et al.  Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. , 2011, Structure.

[47]  Jason Sih-Yu Lai,et al.  Auditory circuit in the Drosophila brain , 2012, Proceedings of the National Academy of Sciences.

[48]  S. Sprecher,et al.  Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue , 2016, Front. Cell. Neurosci..

[49]  Stephan J. Sigrist,et al.  Structural Long-Term Changes at Mushroom Body Input Synapses , 2010, Current Biology.

[50]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[51]  Zhiyuan Lu,et al.  Mapping chromatic pathways in the Drosophila visual system. , 2016, The Journal of comparative neurology.

[52]  C. Desplan,et al.  Power tools for gene expression and clonal analysis in Drosophila , 2011, Nature Methods.

[53]  Louis K. Scheffer,et al.  Semi-automated reconstruction of neural circuits using electron microscopy , 2010, Current Opinion in Neurobiology.

[54]  C. Lois,et al.  Monitoring cell-cell contacts in vivo in transgenic animals , 2016, Development.

[55]  Kole T. Roybal,et al.  Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors , 2016, Cell.

[56]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[57]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[58]  R. Greenspan,et al.  Drosophila D1 dopamine receptor mediates caffeine-induced arousal , 2008, Proceedings of the National Academy of Sciences.

[59]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[60]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[61]  Meng-Tsen Ke,et al.  Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. , 2016, Cell reports.

[62]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[63]  L. Luo,et al.  Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins , 2014, eLife.

[64]  Kendal Broadie,et al.  Living synaptic vesicle marker: Synaptotagmin‐GFP , 2002, Genesis.

[65]  G Ulrich Nienhaus,et al.  Fluorescent proteins for live-cell imaging with super-resolution. , 2014, Chemical Society reviews.

[66]  Tobias M. Rasse,et al.  Activity-dependent site-specific changes of glutamate receptor composition in vivo , 2008, Nature Neuroscience.

[67]  E. Lai,et al.  The Drosophila miR-310 Cluster Negatively Regulates Synaptic Strength at the Neuromuscular Junction , 2010, Neuron.

[68]  Ericka B. Ramko,et al.  A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms , 2011, PLoS biology.

[69]  G. Barnea,et al.  The genetic design of signaling cascades to record receptor activation , 2008, Proceedings of the National Academy of Sciences.

[70]  J. Avis,et al.  Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region , 2012, Proceedings of the National Academy of Sciences.

[71]  Shi-Wei Chu,et al.  Introduction to Superresolution Microscopy , 2015 .

[72]  I. Meinertzhagen,et al.  Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster , 2010, The Journal of comparative neurology.

[73]  Qili Liu,et al.  Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit , 2016, Cell.

[74]  Stefan R. Pulver,et al.  Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion , 2015, PloS one.

[75]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[76]  Rachel I. Wilson,et al.  Stereotyped connectivity and computations in higher-order olfactory neurons , 2013, Nature Neuroscience.

[77]  Mason R. Mackey,et al.  Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species. , 2016, Cell chemical biology.

[78]  J. Rietdorf,et al.  Correlation of two-photon in vivo imaging and FIB/SEM microscopy , 2015, Journal of microscopy.

[79]  V. Baekelandt,et al.  Evaluation of WGA–Cre-dependent topological transgene expression in the rodent brain , 2017, Brain Structure and Function.

[80]  A Cumano,et al.  A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. , 2000, Molecular cell.

[81]  D. Satoh,et al.  Polarity and intracellular compartmentalization of Drosophila neurons , 2007, Neural Development.

[82]  P. Verstreken,et al.  Loss of Skywalker Reveals Synaptic Endosomes as Sorting Stations for Synaptic Vesicle Proteins , 2011, Cell.