A Measure Approach for Continuous Inventory Models: Discounted Cost Criterion

This paper develops a new approach to the solution of impulse control problems for continuous inventory models under a discounted cost criterion. The analysis imbeds this stochastic problem in two different infinite-dimensional linear programs, parametrized by the initial inventory level $x_0$, by concentrating on particular functions and capturing the expected (discounted) behavior of the inventory level process and ordering decisions as measures. The first imbedding then naturally leads to the minimization of a nonlinear function representing the cost associated with an $(s,S)$ ordering policy and an optimizing pair determines optimal levels $(s^*,S^*)$. The lower bound arising from this imbedding is tight when $x_0 \geq s^*$ but is a strict lower bound when $x_0 < s^*$. Solving the first linear program determines the value function in the “no order” region and is critical to the formulation of the second linear program. The dual of the second linear program is then solved to provide a tight lower bound...

[1]  Erhan Bayraktar,et al.  On the Impulse Control of Jump Diffusions , 2012, SIAM J. Control. Optim..

[2]  John H. Vande Vate,et al.  Impulse Control of Brownian Motion: The Constrained Average Cost Case , 2008, Oper. Res..

[3]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[4]  Suresh P. Sethi,et al.  Optimality of an (s, S) Policy with Compound Poisson and Diffusion Demands: A Quasi-Variational Inequalities Approach , 2005, SIAM J. Control. Optim..

[5]  Michael Pinedo,et al.  Optimal Control of a Mean-Reverting Inventory , 2010, Oper. Res..

[6]  Martin Beibel,et al.  A note on optimal stopping of regular diffusions under random discounting@@@A note on optimal stopping of regular diffusions under random discounting , 2000 .

[7]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[8]  Luis H. R. Alvarez,et al.  On the Optimal Stochastic Impulse Control of Linear Diffusions , 2008, SIAM J. Control. Optim..

[9]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[10]  R. Stockbridge,et al.  Construction of the Value Function and Optimal Rules in Optimal Stopping of One-Dimensional Diffusions , 2010, Advances in Applied Probability.

[11]  Alexey Piunovskiy Modern Trends in Controlled Stochastic Processes: , 2010 .

[12]  J. Michael Harrison,et al.  Impulse Control of Brownian Motion , 1983, Math. Oper. Res..

[13]  Michael Johnson,et al.  Optimality of (s, S) policies for jump inventory models , 2012, Math. Methods Oper. Res..

[14]  A. Bensoussan,et al.  Singular control and impulse control: A common approach , 2009 .

[15]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[16]  A. Irle,et al.  A harmonic function technique for the optimal stopping of diffusions , 2011 .

[17]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[18]  Soren Christensen,et al.  On the solution of general impulse control problems using superharmonic functions , 2013, 1304.3578.

[19]  Hans-Joachim Girlich,et al.  The origins of dynamic inventory modelling under uncertainty: (the men, their work and connection with the Stanford Studies) , 2001 .

[20]  M. Robin On Some Impulse Control Problems with Long Run Average Cost , 1981 .

[21]  Masahiko Egami A Direct Solution Method for Stochastic Impulse Control Problems of One-dimensional Diffusions , 2008, SIAM J. Control. Optim..

[22]  Suresh Sethi,et al.  Inventory Models with Continuous and Poisson Demands and Discounted and Average Costs , 2009 .

[23]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[24]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[25]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[26]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[27]  Jerome F. Eastham,et al.  Optimal Impulse Control of Portfolios , 1988, Math. Oper. Res..

[28]  L. Aggoun,et al.  A stochastic inventory model with stock dependent demand items , 2001 .

[29]  Pierre-Louis Lions,et al.  Quasi-variational inequalities and ergodic impulse control , 1986 .

[30]  Jostein Paulsen,et al.  Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs , 2007, Advances in Applied Probability.

[31]  M. Eisen,et al.  Probability and its applications , 1975 .

[32]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[33]  Agnès Sulem,et al.  A Solvable One-Dimensional Model of a Diffusion Inventory System , 1986, Math. Oper. Res..

[34]  J. Kiefer,et al.  On the Optimal Character of the (s, S) Policy in Inventory Theory , 1953 .

[35]  Xin Guo,et al.  Impulse Control of Multidimensional Jump Diffusions , 2009, SIAM J. Control. Optim..