Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer

A site-selective functionalization method in a plasmonic nanopore demonstrates how it is possible to modulate FRET at the nanoscale level.

[1]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[2]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[3]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[4]  Ki-Bum Kim,et al.  Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.

[5]  D. Cheng Field and wave electromagnetics , 1983 .

[6]  R. Guy,et al.  Point-of-Care Testing for Chlamydia and Gonorrhoea: Implications for Clinical Practice , 2014, PloS one.

[7]  Tian Ming,et al.  Plasmon-Controlled Förster Resonance Energy Transfer , 2012 .

[8]  A. Zayats,et al.  Förster Resonance Energy Transfer inside Hyperbolic Metamaterials , 2018, ACS Photonics.

[9]  H. Rigneault,et al.  Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[10]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[11]  C. Dekker,et al.  Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores. , 2018, Small.

[12]  Single-molecule peptide fingerprinting , 2018, Proceedings of the National Academy of Sciences.

[13]  D. Garoli,et al.  Boosting infrared energy transfer in 3D nanoporous gold antennas. , 2017, Nanoscale.

[14]  L. Lagae,et al.  High spatial resolution nanoslit SERS for single-molecule nucleobase sensing , 2018, Nature Communications.

[15]  Gabriele C. Messina,et al.  Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs , 2017, ACS applied materials & interfaces.

[16]  Andreas B. Dahlin,et al.  Sensing applications based on plasmonic nanopores: The hole story. , 2015, The Analyst.

[17]  L. Lanzanó,et al.  Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission. , 2018, Nanoscale.

[18]  J. Wenger,et al.  Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. , 2014, Nano letters.

[19]  D. Görlich,et al.  Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. , 2018, Small.

[20]  N. Bonod,et al.  Purcell factor of spherical Mie resonators , 2015 .

[21]  Michele Dipalo,et al.  Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. , 2018, Nanoscale.

[22]  E. Reimhult,et al.  Selective (bio)functionalization of solid-state nanopores. , 2015, ACS applied materials & interfaces.

[23]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[24]  C. Dekker,et al.  Paving the way to single-molecule protein sequencing , 2018, Nature Nanotechnology.

[25]  J. Wenger,et al.  FRET enhancement in aluminum zero-mode waveguides. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  J. Korlach,et al.  Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing , 2017, Nature nanotechnology.

[27]  Igor L. Medintz,et al.  FRET – Förster Resonance Energy Transfer , 2013 .

[28]  H. Rigneault,et al.  Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency. , 2016, Nano letters.

[29]  Single-molecule spectroscopy using nanoporous membranes. , 2007, Nano letters.

[30]  A. Meller,et al.  Light‐Enhancing Plasmonic‐Nanopore Biosensor for Superior Single‐Molecule Detection , 2017, Advanced materials.

[31]  Fluorescence energy transfer enhancement in aluminum nanoapertures , 2015, 1504.00761.