Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer
暂无分享,去创建一个
Francesco De Angelis | Denis Garoli | Paolo Ponzellini | Giorgia Giovannini | Xavier Zambrana-Puyalto | F. Angelis | X. Zambrana-Puyalto | N. Maccaferri | Giorgia Giovannini | D. Garoli | Nicolo Maccaferri | P. Ponzellini
[1] Fredrik Höök,et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.
[2] Lukas Novotny,et al. Principles of Nano-Optics by Lukas Novotny , 2006 .
[3] M. Majewski,et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.
[4] Ki-Bum Kim,et al. Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.
[5] D. Cheng. Field and wave electromagnetics , 1983 .
[6] R. Guy,et al. Point-of-Care Testing for Chlamydia and Gonorrhoea: Implications for Clinical Practice , 2014, PloS one.
[7] Tian Ming,et al. Plasmon-Controlled Förster Resonance Energy Transfer , 2012 .
[8] A. Zayats,et al. Förster Resonance Energy Transfer inside Hyperbolic Metamaterials , 2018, ACS Photonics.
[9] H. Rigneault,et al. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.
[10] F J García de Abajo,et al. Optical properties of gold nanorings. , 2003, Physical review letters.
[11] C. Dekker,et al. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores. , 2018, Small.
[12] Single-molecule peptide fingerprinting , 2018, Proceedings of the National Academy of Sciences.
[13] D. Garoli,et al. Boosting infrared energy transfer in 3D nanoporous gold antennas. , 2017, Nanoscale.
[14] L. Lagae,et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing , 2018, Nature Communications.
[15] Gabriele C. Messina,et al. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs , 2017, ACS applied materials & interfaces.
[16] Andreas B. Dahlin,et al. Sensing applications based on plasmonic nanopores: The hole story. , 2015, The Analyst.
[17] L. Lanzanó,et al. Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission. , 2018, Nanoscale.
[18] J. Wenger,et al. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. , 2014, Nano letters.
[19] D. Görlich,et al. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. , 2018, Small.
[20] N. Bonod,et al. Purcell factor of spherical Mie resonators , 2015 .
[21] Michele Dipalo,et al. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. , 2018, Nanoscale.
[22] E. Reimhult,et al. Selective (bio)functionalization of solid-state nanopores. , 2015, ACS applied materials & interfaces.
[23] B. Hecht,et al. Principles of nano-optics , 2006 .
[24] C. Dekker,et al. Paving the way to single-molecule protein sequencing , 2018, Nature Nanotechnology.
[25] J. Wenger,et al. FRET enhancement in aluminum zero-mode waveguides. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.
[26] J. Korlach,et al. Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing , 2017, Nature nanotechnology.
[27] Igor L. Medintz,et al. FRET – Förster Resonance Energy Transfer , 2013 .
[28] H. Rigneault,et al. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency. , 2016, Nano letters.
[29] Single-molecule spectroscopy using nanoporous membranes. , 2007, Nano letters.
[30] A. Meller,et al. Light‐Enhancing Plasmonic‐Nanopore Biosensor for Superior Single‐Molecule Detection , 2017, Advanced materials.
[31] Fluorescence energy transfer enhancement in aluminum nanoapertures , 2015, 1504.00761.