Dye-Sensitized Solar Cell with Integrated Triplet-Triplet Annihilation Upconversion System.

Photon upconversion (UC) by triplet-triplet annihilation (TTA-UC) is employed in order to enhance the response of solar cells to sub-bandgap light. Here, we present the first report of an integrated photovoltaic device, combining a dye-sensitized solar cell (DSC) and TTA-UC system. The integrated device displays enhanced current under sub-bandgap illumination, resulting in a figure of merit (FoM) under low concentration (3 suns), which is competitive with the best values recorded to date for nonintegrated systems. Thus, we demonstrate both the compatibility of DSC and TTA-UC and a viable method for device integration.

[1]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[2]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[3]  Maxwell J. Crossley,et al.  Micro-optical design of photochemical upconverters for thin-film solar cells , 2013 .

[4]  F. Castellano,et al.  Triplet Sensitized Red-to-Blue Photon Upconversion , 2010 .

[5]  Ladislav Kavan,et al.  Highly Efficient Semiconducting TiO2 Photoelectrodes Prepared by Aerosol Pyrolysis. , 1995 .

[6]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[7]  Maxwell J. Crossley,et al.  Kinetic Analysis of Photochemical Upconversion by Triplet−Triplet Annihilation: Beyond Any Spin Statistical Limit , 2010 .

[8]  W.G.J.H.M. van Sark,et al.  Towards upconversion for amorphous silicon solar cells , 2010 .

[9]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[10]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[11]  Murad J Y Tayebjee,et al.  On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. , 2010, Physical chemistry chemical physics : PCCP.

[12]  S. R. Silva,et al.  Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor , 2012 .

[13]  A. C. Pan,et al.  Characterization of up-converter layers on bifacial silicon solar cells , 2009 .

[14]  Felix N. Castellano,et al.  Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear , 2012 .

[15]  K. Sasai,et al.  Solution Growth of Rubrene Single Crystals Using Various Organic Solvents , 2008 .

[16]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[17]  B. Fingerhut,et al.  The detailed balance limit of photochemical energy conversion. , 2010, Physical chemistry chemical physics : PCCP.

[18]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[19]  Maxwell J. Crossley,et al.  Efficiency Enhancement of Organic and Thin-Film Silicon Solar Cells with Photochemical Upconversion , 2012 .

[20]  Alexandre Haefele,et al.  Upconversion-powered photoelectrochemistry. , 2012, Chemical communications.

[21]  C. N. Reilley,et al.  Triplet → Triplet Fluorescence of Rubrene in Solution , 1968 .

[22]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[23]  Michael Dürr,et al.  Tandem dye-sensitized solar cell for improved power conversion efficiencies , 2004 .

[24]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[25]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[26]  P. Ceroni Energy up-conversion by low-power excitation: new applications of an old concept. , 2011, Chemistry.

[27]  Y. Murakami Photochemical photon upconverters with ionic liquids , 2011, 1106.4172.

[28]  G. Wegner,et al.  Up-conversion fluorescence: noncoherent excitation by sunlight. , 2006, Physical review letters.

[29]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[30]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[31]  J. Williams,et al.  Energy Upconversion via Triplet Fusion in Super Yellow PPV Films Doped with Palladium Tetraphenyltetrabenzoporphyrin: a Comprehensive Investigation of Exciton Dynamics , 2013 .

[32]  U. Bach,et al.  Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators , 2012 .

[33]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[34]  Shaomin Ji,et al.  Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields , 2011 .

[35]  Kazuo Tanaka,et al.  Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS) , 2012 .

[36]  S. M. Leshchev,et al.  Comparative Assessment of the Solvating Powers of Solvents of Different Nature with Respect to Condensed Aromatic Hydrocarbons , 2003 .

[37]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[38]  Francesco Scotognella,et al.  Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold , 2008 .

[39]  Maxwell J. Crossley,et al.  Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector , 2012 .

[40]  W. Meggers,et al.  Some Rules of Spectral Structure , 1925 .

[41]  Takayuki Kitamura,et al.  Dye-sensitized solar cells: improvement of spectral response by tandem structure , 2004 .

[42]  Tony Khoury,et al.  A strategy for the stepwise ring annulation of all four pyrrolic rings of a porphyrin. , 2007, Chemical communications.

[43]  H. Pettersson,et al.  Nanocrystalline dye‐sensitized solar cells having maximum performance , 2007 .

[44]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[45]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[46]  M. Grätzel Dye-sensitized solar cells , 2003 .

[47]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[48]  F. Ortica,et al.  New molecular pairs for low power non-coherent triplet–triplet annihilation based upconversion: dependence on the triplet energies of sensitizer and emitter , 2013 .

[49]  S. Glunz,et al.  Neodymium‐doped fluorochlorozirconate glasses as an upconversion model system for high efficiency solar cells , 2008 .

[50]  Tymish Y. Ohulchanskyy,et al.  Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region , 2012 .

[51]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[52]  Yalin Lu,et al.  Enhancing near-infrared solar cell response using upconverting transparentceramics , 2011 .

[53]  Fan Deng,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2014 .

[54]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[55]  Henry J. Snaith,et al.  Estimating the Maximum Attainable Efficiency in Dye‐Sensitized Solar Cells , 2010 .

[56]  H. Pettersson,et al.  Dye-sensitized solar cells. , 2010, Chemical Reviews.

[57]  Hidetoshi Miura,et al.  High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. , 2004, Journal of the American Chemical Society.