Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis)

[1]  D. Fekete,et al.  Three‐dimensional morphology of inner ear development in Xenopus laevis , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[2]  Sheryl Coombs,et al.  Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi) , 2003, Journal of Experimental Biology.

[3]  Horst Bleckmann,et al.  Behavioral discrimination of water motions caused by moving objects , 2001, Journal of Comparative Physiology A.

[4]  S. Coombs,et al.  The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. , 2001, The Journal of experimental biology.

[5]  J. Janssen,et al.  Toxicity of Co2+: implications for lateral line studies , 2000, Journal of Comparative Physiology A.

[6]  D. Schild,et al.  Structure of the olfactory bulb in tadpoles of Xenopus laevis , 2000, Cell and Tissue Research.

[7]  C. F. Baker,et al.  The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus , 1999, Journal of Comparative Physiology A.

[8]  D. Bagger-Sjoback Effect of Streptomycin and Gentamicin on the Inner Ear , 1997, Annals of the New York Academy of Sciences.

[9]  J. Montgomery,et al.  The lateral line can mediate rheotaxis in fish , 1997, Nature.

[10]  B. Claas,et al.  Analysis of surface wave direction by the lateral line system of Xenopus: Source localization before and after inactivation of different parts of the lateral line , 1996, Journal of Comparative Physiology A.

[11]  Jiakun Song,et al.  Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure , 1995, Hearing Research.

[12]  Armando Varela-Ramírez,et al.  Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development , 1995, Hearing Research.

[13]  J. Gurdon,et al.  Normal table of Xenopus laevis (Daudin) , 1995 .

[14]  G. Burd,et al.  Development of the olfactory bulb in the clawed frog, Xenopus laevis: A morphological and quantitative analysis , 1991, The Journal of comparative neurology.

[15]  A. Popper,et al.  Sensory hair cells of a fish ear: evidence of multiple types based on ototoxicity sensitivity , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Sheryl Coombs,et al.  Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi , 1990, Journal of Comparative Physiology A.

[17]  R. Winklbauer Development of the lateral line system in Xenopus , 1989, Progress in Neurobiology.

[18]  A. Hudspeth,et al.  Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics , 1989, Hearing Research.

[19]  F. Schaeffel,et al.  Visual optics in toads (Bufo americanus) , 1988, Journal of Comparative Physiology.

[20]  Olav Sand,et al.  Selective and Reversible Blocking of the Lateral Line in Freshwater Fish , 1987 .

[21]  A. Elepfandt,et al.  Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system , 1982, Journal of comparative physiology.

[22]  S. Lerner,et al.  Schooling behavior of tadpoles: A potential indicator of ototoxicity , 1982, Pharmacology Biochemistry and Behavior.

[23]  A. Kroese,et al.  Effects of ototoxic antibiotics on sensory hair cell functioning , 1982, Hearing Research.

[24]  L. C. Katz,et al.  Structure and mechanisms of schooling intadpoles of the clawed frog, Xenopus laevis , 1981, Animal Behaviour.

[25]  Steven Vogel,et al.  Simple Flow Tanks for Research and Teaching , 1978 .

[26]  A. Kroese,et al.  Frequency response of the lateral-line organ of xenopus laevis , 1978, Pflügers Archiv.

[27]  Vicente Honrubia,et al.  Effective stimulus for the xenopus laevis lateral‐line hair‐cell system , 1976, The Laryngoscope.

[28]  J. Hailman,et al.  Ontogenetic shift of spectral phototactic preferences in anuran tadpoles. , 1976, Journal of comparative and physiological psychology.

[29]  G. Arnold,et al.  RHEOTROPISM IN FISHES , 1974, Biological reviews of the Cambridge Philosophical Society.

[30]  P. M. Shelton The structure and function of the lateral line system in larval Xenopus laevis. , 1971, The Journal of experimental zoology.

[31]  P. M. Shelton The lateral line system at metamorphosis in Xenopus laevis (Daudin). , 1970, Journal of embryology and experimental morphology.

[32]  J WERSAELL,et al.  SUPPRESSION AND RESTORATION OF THE MICROPHONIC OUTPUT FROM THE LATERAL LINE ORGAN AFTER LOCAL APPLICATION OF STREPTOMYCIN. , 1964, Life sciences.

[33]  W. V. Bergeijk Hydrostatic Balancing Mechanism of Xenopus Larvae , 1959 .

[34]  B. Claas,et al.  Reaction to surface waves by Xenopus laevis Daudin. Are sensory systems other than the lateral line involved? , 2004, Journal of Comparative Physiology.

[35]  P. Görner,et al.  Innervation patterns of the lateral line stitches of the clawed frog, Xenopus laevis, and their reorganization during metamorphosis. , 1996, Brain, behavior and evolution.

[36]  J. Schacht,et al.  Ototoxicity: Of Mice and Men , 1996 .

[37]  R. Wassersug,et al.  The bronchial diverticula of Xenopus larvae. Are they essential for hydrostatic assessment? , 1990, Die Naturwissenschaften.

[38]  Peter Görner,et al.  Lateral-Line Input and Stimulus Localization in the African Clawed Toad Xenopus SP , 1984 .