Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy

Dynamic structural changes of macromolecules undergoing biochemical reactions can be studied using novel single molecule spectroscopy tools. Recent advances in applying such distance and orientation molecular rulers to biological systems are reviewed, and future prospects and challenges are discussed.

[1]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[2]  D. Chemla,et al.  Single Molecule Dynamics Studied by Polarization Modulation. , 1996, Physical review letters.

[3]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  X. Zhuang,et al.  A single-molecule study of RNA catalysis and folding. , 2000, Science.

[5]  C. Cantor,et al.  Biophysical chemistry. Part III, The behavior of biologicalmacromolecules , 1980 .

[6]  X. Xie,et al.  Single-Molecule Spectroscopy and Dynamics at Room Temperature , 1996 .

[7]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[8]  Michel Orrit,et al.  Ten Years of Single-Molecule Spectroscopy. , 2000, The journal of physical chemistry. A.

[9]  W. B. Caldwell,et al.  Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Yanagida,et al.  Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. , 1999, Science.

[11]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[12]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[13]  M. A. Bopp,et al.  The dynamics of structural deformations of immobilized single light-harvesting complexes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[15]  W. P. Ambrose,et al.  Single molecule fluorescence spectroscopy at ambient temperature. , 1999, Chemical reviews.

[16]  Andrew B. Martin,et al.  Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Toshio Yanagida,et al.  Single-molecule imaging of EGFR signalling on the surface of living cells , 2000, Nature Cell Biology.

[18]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Selvin Fluorescence resonance energy transfer. , 1995, Methods in enzymology.

[20]  I. Sase,et al.  Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[22]  Thomas Basché,et al.  Single-molecule optical detection, imaging and spectroscopy , 1997 .

[23]  W. Junge,et al.  Three‐stepped rotation of subunits γ and ϵ in single molecules of F‐ATPase as revealed by polarized, confocal fluorometry , 1998 .

[24]  X. Zhuang,et al.  Ligand-induced conformational changes observed in single RNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Shimon Weiss,et al.  Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules , 1996 .

[26]  G. Schütz,et al.  Direct observation of ligand colocalization on individual receptor molecules. , 1998, Biophysical journal.

[27]  Shimon Weiss,et al.  TEMPORAL FLUCTUATIONS OF FLUORESCENCE RESONANCE ENERGY TRANSFER BETWEEN TWO DYES CONJUGATED TO A SINGLE PROTEIN , 1999 .

[28]  M. Irving,et al.  Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction , 1999, Nature.

[29]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[30]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[31]  X. Xie,et al.  Optical studies of single molecules at room temperature. , 1998, Annual review of physical chemistry.

[32]  T. Yanagida,et al.  Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution , 1999 .

[33]  J. Corrie,et al.  A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. , 1998, Bioconjugate chemistry.

[34]  Y. Jia,et al.  Folding dynamics of single GCN-4 peptides by fluorescence resonant energy transfer confocal microscopy , 1999 .

[35]  A Libchaber,et al.  Kinetics of conformational fluctuations in DNA hairpin-loops. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[37]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[38]  Gerald Kada,et al.  Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy , 2000, The EMBO journal.

[39]  W. E. Moerner,et al.  Single-Molecule Fluorescence Resonant Energy Transfer in Calcium Concentration Dependent Cameleon , 2000 .

[40]  R. Zare,et al.  Optical detection of single molecules. , 1997, Annual review of biophysics and biomolecular structure.

[41]  F. Güttler,et al.  Single-Molecule Spectroscopy - Fluorescence Excitation-Spectra with Polarized-Light , 1993 .

[42]  Shimon Weiss,et al.  Ratiometric measurement and identification of single diffusing molecules , 1999 .

[43]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[44]  Masasuke Yoshida,et al.  Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Laurence,et al.  Polarization Spectroscopy of Single Fluorescent Molecules , 1999 .

[46]  M. Irving,et al.  Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. , 1998, Biophysical journal.

[47]  Paul R. Selvin,et al.  The renaissance of fluorescence resonance energy transfer , 2000, Nature Structural Biology.

[48]  D. Chemla,et al.  Hindered Rotational Diffusion and Rotational Jumps of Single Molecules , 1998 .

[49]  K. Trybus,et al.  Myosin conformational states determined by single fluorophore polarization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.